DOI QR코드

DOI QR Code

고성능 광각 3차원 스캐닝 라이다를 위한 스터드 기술 기반의 대면적 고속 단일 광 검출기

Large-area High-speed Single Photodetector Based on the Static Unitary Detector Technique for High-performance Wide-field-of-view 3D Scanning LiDAR

  • 한문현 (한국전자통신연구원 광무선연구본부) ;
  • 민봉기 (한국전자통신연구원 광무선연구본부)
  • Munhyun Han (Photonic/Wireless Devices Research Division, Electronics and Telecommunications Research Institute) ;
  • Bongki Mheen (Photonic/Wireless Devices Research Division, Electronics and Telecommunications Research Institute)
  • 투고 : 2023.05.22
  • 심사 : 2023.06.21
  • 발행 : 2023.08.25

초록

다양한 구조의 라이다(light detection and ranging, LiDAR)가 존재함에도 불구하고 넓은 화각을 유지하면서 장거리 측정과 수직, 수평 방향 모두에서 높은 해상도를 만족하는 LiDAR를 구현하는 것은 매우 어렵다. 스캐닝 구조는 장거리 탐지 및 수직, 수평 방향에 대한 높은 해상도를 만족하는 고성능 LiDAR를 구현하는 데 유리하지만, 넓은 화각을 확보하기 위해서는 검출 속도에 불리한 대면적 광 검출기(photodetector, PD)가 필수적이다. 따라서 이러한 문제점을 해결하기 위해 다수의 소면적 PD를 고속의 단일 대면적 PD로 작동할 수 있는 static unitary detector(STUD) 기술 기반의 PD를 제안하였다. 본 논문에서 제안하는 InP/InGaAs STUD PIN-PD는 1,256 ㎛×19 ㎛의 단위 면적을 가지는 32개 소면적 PD를 활용하여 1,256 ㎛×949 ㎛ 이내에서 다양한 형태로 설계 및 제작하였다. 이후 다양한 형태로 제작된 STUD PD의 특성과 감도는 물론 이를 활용한 LiDAR 수신 보드의 잡음 및 신호 특성에 대해 측정 및 분석하였다. 마지막으로 STUD PD가 적용된 LiDAR 수신 보드를 1.5-㎛ master oscillator power amplifier 레이저를 광원으로 활용하는 3차원 스캐닝 LiDAR 시제품에 적용하였고, 이를 통해 대각 32.6도의 광각에서 50 m 이상의 장거리 물체를 정밀하게 탐지하면서 320 px×240 px의 고해상도 3차원 영상을 동시에 확보하였다.

Despite various light detection and ranging (LiDAR) architectures, it is very difficult to achieve long-range detection and high resolution in both vertical and horizontal directions with a wide field of view (FOV). The scanning architecture is advantageous for high-performance LiDAR that can attain long-range detection and high resolution for vertical and horizontal directions. However, a large-area photodetector (PD), which is disadvantageous for detection speed, is essentially required to secure the wide FOV. Thus we propose a PD based on the static unitary detector (STUD) technique that can operate multiple small-area PDs as a single large-area PD at a high speed. The InP/InGaAs STUD PIN-PD proposed in this paper is fabricated in various types, ranging from 1,256 ㎛×949 ㎛ using 32 small-area PDs of 1,256 ㎛×19 ㎛. In addition, we measure and analyze the noise and signal characteristics of the LiDAR receiving board, as well as the performance and sensitivity of various types of STUD PDs. Finally, the LiDAR receiving board utilizing the STUD PD is applied to a 3D scanning LiDAR prototype that uses a 1.5-㎛ master oscillator power amplifier laser. This LiDAR precisely detects long-range objects over 50 m away, and acquires high-resolution 3D images of 320 pixels×240 pixels with a diagonal FOV of 32.6 degrees simultaneously.

키워드

과제정보

중소벤처기업부 기술개발사업(과제번호: 22FB2110); 재난치안용 멀티 콥터 무인기 통신, 안전운항, 운영관리 기술 개발(과제번호: 19PR1230).

참고문헌

  1. J. Li, H. Bao, X. Han, F. Pan, W. Pan, F. Zhang, and D. Wang, "Real-time self-driving car navigation and obstacle avoidance using mobile 3D laser scanner and GNSS," Multimed. Tools Appl. 76, 23017-23039 (2017). https://doi.org/10.1007/s11042-016-4211-7
  2. L. Chen, Y. He, J. Chen, Q. Li, and Q. Zou, "Transforming a 3-D LiDAR point cloud into a 2-D dense depth map through a parameter self-adaptive framework," IEEE Trans. Intell. Transp. Syst. 18, 165-176 (2017). https://doi.org/10.1109/TITS.2016.2564640
  3. U. Lee, J. Jung, S. Jung, and D. H. Shim, "Development of a self-driving car that can handle the adverse weather," Int. J. Automot. Technol. 19, 191-197 (2018). https://doi.org/10.1007/s12239-018-0018-z
  4. K. H. An, S. W. Lee, W. Y. Han, and J. C. Son, "Technology trends of self-driving vehicles," Electron. Telecommun. Trend 28, 35-44 (2013).
  5. B. L. Stann, J. F. Dammann, M. M. Giza, R. R. Gregory, P. S. Jian, and W. B. Lawler, "Low-cost compact ladar sensor for ground robots," Proc. SPIE 7323, 73230X (2009).
  6. L. Wallace, A. Lucieer, C. Watson, and D. Turner, "Development of a UAV-LiDAR System with application to forest inventory," Remote Sens. 4, 1519-1543 (2012). https://doi.org/10.3390/rs4061519
  7. B. Brede, A. Lau, H. M. Bartholomeus, and L. Kooistra, "Comparing RIEGL RiCORTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR," Sensors 17, 2371 (2017).
  8. J. Zhou and K. Qian, "Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror," Appl. Opt. 58, A283-A290 (2019). https://doi.org/10.1364/AO.58.00A283
  9. L. Ye, G. Gu, W. He, H. Dai, J. Lin, and Q. Chen, "Adaptive target profile acquiring method for photon counting 3-D imaging lidar," IEEE Photonics J. 8, 680551 (2016).
  10. M. Okano and C. Chong, "Swept source lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source," Opt. Express 28, 23898-23915 (2020). https://doi.org/10.1364/OE.396707
  11. J. D. Chen, H. L. Ho, H. L. Tsay, Y. L. Lee, C. A. Yang, K. W. Wu, J. L. Sun, D. J. Tsai, and F. Y. Lin, "3D chaos lidar system with a pulsed master oscillator power amplifier scheme," Opt. Express 29, 27871-27881 (2021). https://doi.org/10.1364/OE.433036
  12. J. He, T. Dong, and Y. Xu, "Review of photonic integrated optical phased arrays for space optical communication," IEEE Access 8, 188284-188298 (2020).
  13. C. Glennie and D. D. Lichti, "Static calibration and analysis of the Velodyne HDL-64E S2 for high accuracy mobile scanning," Remote Sens. 2, 1610-1624 (2010). https://doi.org/10.3390/rs2061610
  14. C. Zhang, S. Lindner, I. M. Antolovic, J. M. Pavia, M. Wolf, and E. Charbon, "A 30-frames/s, 252×144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming," IEEE J. Solid-State Circuits 54, 1137-1151 (2019). https://doi.org/10.1109/JSSC.2018.2883720
  15. E. Garcia and H. Lamela, "Low-cost three-dimensional vision system based on a low-power semiconductor laser rangefinder and a single scanning mirror," Opt. Eng. 40, 61-66 (2001). https://doi.org/10.1117/1.1331267
  16. X. Zhu, A. DesLauriers, C. Bell, L. Gagnon, M. Guibert, E. Simard, S. Gemme, and L. Ilinca-Ignat, "A wide angle bistatic scanning lidar for navigation," Proc. SPIE 8379, 83790V (2012).
  17. B. L. Stann, J. F. Dammann, M. M. Giza, P. S. Jian, W. B. Lawler, H. M. Nguyen, and L. C. Sadler, "MEMS-scanned ladar sensor for small ground robots," Proc. SPIE 7684, 76841E (2010).
  18. H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, "Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength," Opt. Eng. 56, 031216 (2016).
  19. H.-S. Cho, C.-H. Kim, and S.-G. Lee, "A high-sensitivity and low-walk error LADAR receiver for military application," IEEE Trans. Circuits Syst. I Regul. Pap. 61, 3007-3015 (2014). https://doi.org/10.1109/TCSI.2014.2327282
  20. S. Kurtti, J. Nissinen, and J. Kostamovaara, "A wide dynamic range CMOS laser radar receiver with a time-domain walk error compensation scheme," IEEE Trans. Circuits Syst. I Regul. Pap. 64, 550-561 (2017). https://doi.org/10.1109/TCSI.2016.2619762
  21. B. Mheen, J.-S. Shim, M. S. Oh, J. Song, M. Song, G. D. Choi, H. Seo, and Y.-H. Kwon, "High-resolution three-dimensional laser radar with static unitary detector," Electron. Lett. 50, 313-315 (2014). https://doi.org/10.1049/el.2013.3298
  22. J.-X. Zhang, W. Wang, Z.-B. Li, H. F. Ye, R.-Y. Huang, Z.-P. Hou, H. Zeng, H.-X. Zhe, C. Liu, X.-Y. Yang, and Y.-L. Shi, "Development of a high performance 1280×1024 InGaAs SWIR FPA detector at room temperature," Front. Phys. 9, 678192 (2021).
  23. M. Han, G. Choi, M. Song, H. Seo, and B. Mheen, "Analysis and enhancement of 3D shape accuracy in a single-shot LIDAR sensor," Proc. SPIE 10089, 100890R (2017).
  24. M. Han, H. Seo, and B. Mheen, "High-resolution and a wide field-of-view eye-safe LiDAR based on a static unitary detector for low-SWaP applications," Opt. Express 30, 30918-30935 (2022). https://doi.org/10.1364/OE.468880
  25. G. Choi, M. Han, H. Seo, and B. Mheen, "Analysis of the SNR and sensing ability of different sensor types in a LIDAR system," Proc. SPIE 10427, 104271S (2017).
  26. J. H. L. Pang and D. Y. R. Chong, "Flip chip on board solder joint reliability analysis using 2-D and 3-D FEA models," IEEE Trans. Adv. Packag. 24, 499-506 (2001). https://doi.org/10.1109/6040.982836
  27. C. H. Seager, "The determination of grain-boundary recombination rates by scanned spot excitation methods," J. Appl. Phys. 53, 5968-5971 (1982). https://doi.org/10.1063/1.331389
  28. L. A. Bitzer, M. Meseth, N. Benson, and R. Schmechel, "A new adaptive light beam focusing principle for scanning light stimulation systems," Rev. Sci. Instrum. 84, 023707 (2013).
  29. J. S. Wu, D. Y. Lin, Y. G. Li, G. P. Hsu, M. C. Kao, and H. Z. Chen, "Optical characterization and photovoltaic performance evaluation of GaAs p-i-n solar cells with various grid spacings," Crystals 9, 170 (2019).
  30. M. Pfennigbauer and A. Ullrich, "Multi-wavelength airborne laser scanning," in Proc. International Lidar Mapping Forum-ILMF (New Orleans, USA, Feb. 7-9, 2011).
  31. F. Seeber, "Light sources and laser safety," in Fundamentals of Photonics, B. E. A. Saleh and M. C. Teich, Eds., 2nd ed. (Wiley, USA, 2007).