DOI QR코드

DOI QR Code

Chronic Obstructive Pulmonary Disease and the Airway Microbiome: What Respirologists Need to Know

  • Don D. Sin (Center for Heart Lung Innovation, St. Paul's Hospital and Division of Respiratory Medicine, University of British Columbia)
  • Received : 2023.01.31
  • Accepted : 2023.04.10
  • Published : 2023.07.31

Abstract

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. The lower airways contain a rich and diverse microbiome, which may play a significant regulatory role in both health and disease. In COPD, the microbiome becomes perturbed, causing dysbiosis. Increased representation of members in the Proteobacteria phylum and certain members in the Firmicutes phylum has been associated with increased risk of exacerbations and mortality. Therapies such as inhaled corticosteroids and azithromycin may modulate the airway microbiome or its metabolites in patients with COPD. This paper provides an up-to-date overview of the airway microbiome and its importance in the pathophysiology of COPD and as potential therapeutic target in the future.

Keywords

Acknowledgement

The DISARM trial was funded in part by AZ.

References

  1. Stolz D, Mkorombindo T, Schumann DM, Agusti A, Ash SY, Bafadhel M, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 2022;400:921-72. https://doi.org/10.1016/S0140-6736(22)01273-9
  2. Adeloye D, Song P, Zhu Y, Campbell H, Sheikh A, Rudan I, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med 2022;10:447-58. https://doi.org/10.1016/S2213-2600(21)00511-7
  3. Lee H, Sin DD. GETting to know the many causes and faces of COPD. Lancet Respir Med 2022;10:426-8. https://doi.org/10.1016/S2213-2600(22)00049-2
  4. Khakban A, Sin DD, FitzGerald JM, McManus BM, Ng R, Hollander Z, et al. The projected epidemic of chronic obstructive pulmonary disease hospitalizations over the next 15 years: a population-based perspective. Am J Respir Crit Care Med 2017;195:287-91. https://doi.org/10.1164/rccm.201606-1162PP
  5. Adibi A, Sin DD, Safari A, Johnson KM, Aaron SD, FitzGerald JM, et al. The Acute COPD Exacerbation Prediction Tool (ACCEPT): a modelling study. Lancet Respir Med 2020;8:1013-21. https://doi.org/10.1016/S2213-2600(19)30397-2
  6. Sadatsafavi M, Sin DD, Zafari Z, Criner G, Connett JE, Lazarus S, et al. The association between rate and severity of exacerbations in chronic obstructive pulmonary disease: an application of a joint frailty-logistic model. Am J Epidemiol 2016;184:681-9. https://doi.org/10.1093/aje/kww085
  7. Cotran RS, Kumar V, Collins T, Robbins SL. Robbins pathologic basis of disease. 6th ed. Philadelphia: Saunders; 1999.
  8. Agusti A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P, et al. Global Initiative for Chronic Obstructive Lung Disease 2023 report: GOLD executive summary. Eur Respir J 2023;61:2300239.
  9. Sze MA, Hogg JC, Sin DD. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis 2014;9:229-38.
  10. Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019;10:5029.
  11. Badotti F, de Oliveira FS, Garcia CF, Vaz AB, Fonseca PL, Nahum LA, et al. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiol 2017;17:42.
  12. Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet 2019;20:341-55. https://doi.org/10.1038/s41576-019-0113-7
  13. Shakya M, Lo CC, Chain PS. Advances and challenges in metatranscriptomic analysis. Front Genet 2019;10:904.
  14. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, et al. Bacterial topography of the healthy human lower respiratory tract. mBio 2017;8:e02287-16.
  15. Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet 2014;384:691-702. https://doi.org/10.1016/S0140-6736(14)61136-3
  16. Leitao Filho FS, Monica Peters C, Sheel AW, Yang J, Nislow C, Lam S, et al. Characterization of the lower airways and oral microbiota in healthy young persons in the community. Biomedicines 2023;11:841.
  17. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One 2010;5:e8578.
  18. Leitao Filho FS, Takiguchi H, Akata K, Ra SW, Moon JY, Kim HK, et al. Effects of inhaled corticosteroid/long-acting β2: agonist combination on the airway microbiome of patients with chronic obstructive pulmonary disease: a randomized controlled clinical trial (DISARM). Am J Respir Crit Care Med 2021;204:1143-52. https://doi.org/10.1164/rccm.202102-0289OC
  19. Dicker AJ, Huang JT, Lonergan M, Keir HR, Fong CJ, Tan B, et al. The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease. J Allergy Clin Immunol 2021;147:158-67. https://doi.org/10.1016/j.jaci.2020.02.040
  20. Ramsheh MY, Haldar K, Esteve-Codina A, Purser LF, Richardson M, Muller-Quernheim J, et al. Lung microbiome composition and bronchial epithelial gene expression in patients with COPD versus healthy individuals: a bacterial 16S rRNA gene sequencing and host transcriptomic analysis. Lancet Microbe 2021;2:e300-10. https://doi.org/10.1016/S2666-5247(21)00035-5
  21. Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, et al. Host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015;192:438-45. https://doi.org/10.1164/rccm.201502-0223OC
  22. Yan Z, Chen B, Yang Y, Yi X, Wei M, Ecklu-Mensah G, et al. Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol 2022;7:1361-75. https://doi.org/10.1038/s41564-022-01196-8
  23. Rosell A, Monso E, Soler N, Torres F, Angrill J, Riise G, et al. Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease. Arch Intern Med 2005;165:891-7. https://doi.org/10.1001/archinte.165.8.891
  24. Alotaibi NM, Tam S, van Eeden SF, Shaipanich T, Lam S, Leung JM, et al. Common respiratory pathogens other than Haemophilus in small airways are associated with neutrophilic inflammation and poor health status in stable COPD patients. Chronic Obstr Pulm Dis 2023;10:122-6. https://doi.org/10.15326/jcopdf.2022.0338
  25. Leitao Filho FS, Alotaibi NM, Ngan D, Tam S, Yang J, Hollander Z, et al. Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations. Am J Respir Crit Care Med 2019;199:1205-13. https://doi.org/10.1164/rccm.201806-1135OC
  26. Segal LN, Clemente JC, Wu BG, Wikoff WR, Gao Z, Li Y, et al. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax 2017;72:13-22. https://doi.org/10.1136/thoraxjnl-2016-208599
  27. Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J 2014;44:1697-700. https://doi.org/10.1183/09031936.00162414
  28. Sin DD, Tashkin D, Zhang X, Radner F, Sjobring U, Thoren A, et al. Budesonide and the risk of pneumonia: a meta-analysis of individual patient data. Lancet 2009;374:712-9. https://doi.org/10.1016/S0140-6736(09)61250-2
  29. Yip W, Li X, Koelwyn GJ, Milne S, Leitao Filho FS, Yang CX, et al. Inhaled corticosteroids selectively alter the microbiome and host transcriptome in the small airways of patients with chronic obstructive pulmonary disease. Biomedicines 2022;10:1110.