DOI QR코드

DOI QR Code

Nanosulfated Silica as a Potential Heterogeneous Catalyst for the Synthesis of Nitrobenzene

  • Khairul Amri (Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada) ;
  • Aan Sabilladin (Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada) ;
  • Remi Ayu Pratika (Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Palangka Raya) ;
  • Ari Sudarmanto (Pharmacy Department, Faculty of Pharmacy, Universitas Gadjah Mada) ;
  • Hilda Ismail (Pharmacy Department, Faculty of Pharmacy, Universitas Gadjah Mada) ;
  • Budhijanto (Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada) ;
  • Mega Fia Lestari (Department of Chemical Analysis, Akademi Komunitas Industri Manufaktur Bantaeng) ;
  • Won-Chun Oh (Department of Advanced Materials and Engineering, Hanseo University) ;
  • Karna Wijaya (Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada)
  • 투고 : 2023.03.16
  • 심사 : 2023.07.10
  • 발행 : 2023.07.27

초록

In this study, the synthesis of nitrobenzene was carried out using sulfated silica catalyst. The study delved into H2SO4/SiO2 as a solid acid catalyst and the effect of its weight variation, as well as the use of a microwave batch reactor in the synthesis of nitrobenzene. SiO2 was prepared using the sol-gel method from TEOS precursor. The formed gel was then refluxed with methanol and calcined at a temperature of 600 ℃. SiO2 with a 200-mesh size was impregnated with 98 % H2SO4 by mixing for 1 h. The resulting 33 % (w/w) H2SO4/SiO2 catalyst was separated by centrifugation, dried, and calcined at 600 ℃. The catalyst was then used as a solid acid catalyst in the synthesis of nitrobenzene. The weights of catalyst used were 0.5; 1; and 1.5 grams. The synthesis of nitrobenzene was carried out with a 1:3 ratio of benzene to nitric acid in a microwave batch reactor at 60 ℃ for 5 h. The resulting nitrobenzene liquid was analyzed using GC-MS to determine the selectivity of the catalyst. Likewise, the use of a microwave batch reactor was found to be appropriate and successful for the synthesis of nitrobenzene. The thermal energy produced by the microwave batch reactor was efficient enough to be used for the nitration reaction. Reactivity and selectivity tests demonstrated that 1 g of H2SO4/SiO2 could generate an average benzene conversion of 40.33 %.

키워드

과제정보

This research was funded by PTUPT Grant, Universitas Gadjah Mada (Contract Number: 1679/UN1/DITLIT/DITLIT/PT.01.03/2022).

참고문헌

  1. V. Mane, M. Lalaso, S. Waghmode, K. D. Jadhav, M. K. Dongare and S. P. Dagade, IOSR J. Appl. Chem., 7, 50 (2014). 
  2. D. Wang, H. Shan, X. Sun and H. Zhang, Adsorp. Sci. Technol., 136, 1366 (2018). 
  3. R. Agustriyanto, L. Sapaei, R. Setiawan and G. Rosaline, in Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri (Malang, East Java, February 2017) p.1-6. 
  4. P. A. Quadros, N. M. C. Oliveira and C. M. S. G. Baptista, Chem. Eng. J., 108, 1 (2005). 
  5. V. F. Zhilin, V. L. Zbarskii and N. V. Yudin, Kinet. Catal., 47, 846 (2006). 
  6. A. P. Koskin, I. V. Mishakov and A. A. Vedyagin, Resour. Technol., 2, 118 (2016). 
  7. S. B. Umbarkar, A. V. Biradar, S. M. Mathew, S. B. Shelke, K. M. Malshe, P. T. Patil, S. P. Dagde, S. P. Niphadkar and M. K. Dongare, Green Chem., 8, 488 (2006). 
  8. A. P. Koskin, R. V. Kenzhin, A. A. Vedyagin and I. V. Mishakov, Catal. Commun., 53, 83 (2014). 
  9. I. Sreedhar, M. Singh and K. V. Raghavan, Catal. Sci. Technol., 3, 2499 (2013). 
  10. A. A. Kurkani, Beilstein J. Org. Chem., 10, 405 (2014). 
  11. W. Wangsa, R. A. Pratika, T. S. Ningrum and K. Wijaya, Key Eng. Mater., 920, 159 (2022). 
  12. S. Rasheed, D. N. Rao, A. S. Reddy, R. Shankar and P. Das, RSC Adv., 5, 10567 (2015). 
  13. A. Aneu, R. A. Pratika, H. Hasanudin, S. Gea, K. Wijaya and W.-C. Oh, Silicon (2023). from https://doi.org/10.1007/s12633-023-02403-9 
  14. K. Wijaya, R. A. Pratika, E. R. Fitri, P. F. Prabani, Y. Candrasasi, W. D. Saputri, S. Mulijani, A. Patah and A. C. Wibowo, Korean J. Mater. Res., 32, 3 (2022). 
  15. A. Aneu, K. Wijaya and A. Syoufian, Silicon, 13, 2265 (2020). 
  16. J. Sun, W. Wang and Q. Yue, Materials, 9, 231 (2016). 
  17. K. Wijaya, A. Nadia, A. Dinana, A. F. Pratiwi, A. D. Tikoalu and A. C. Wibowo, Catalysts, 11, 1150 (2021). 
  18. P. Priecel, J. Antonio and A. Lopez-Sanchez, ACS Sustainable Chem. Eng., 7, 3 (2019). 
  19. D. Bogdal, Microwave-Assisted Organic Synthesis: One Hundred Reaction Procedures, 1st ed., p.152, Amsterdam, Elsevier Science (2005). 
  20. H. Vasudev, G. Singh, A. Bansal, S. Vardhan and L. Thakur, Mater. Res. Express, 6, 102001 (2019). 
  21. A. Nadia, K. Wijaya, I. I. Falah, S. Sudiono and A. Budiman, Waste Biomass Valorization, 13, 2335 (2022). 
  22. N. Radwan, M. Hagar, T. Afifi, F. Al-wadaani and R. Okasha, Catalysts, 8, 1 (2018). 
  23. K. B. Ghoreishi, N. Asim, M. A. Yarno and M. W. Samsudin, Chem. Pap., 68, 1195 (2014). 
  24. A. Zarei, L. Khazdooz, H. Aghaei, M. M. Gheisari, S. Alizadeh and L. Golestanifar, Tetrahedron, 73, 6954 (2017). 
  25. K. M. S. Khalil, J. Colloid Interface Sci., 315, 562 (2007). 
  26. S. Bai, S. Urabe, Y. Okaue and T. Yokoyama, J. Colloid Interface Sci., 331, 551 (2009). 
  27. K. Wijaya, M. L. L. Malau, M. Utami, S. Mulijani, A Patah, A. C. Wibowo, M. Chandrasekaran, J. R. Rajabathar and H. A. Al-Lohedan, Catalysts, 11, 1511 (2021). 
  28. F. J. Sotomayor, K. A. Cychosz and M. Thommes, Acc. Mater. Surf. Res., 3, 34 (2018). 
  29. F. U. M. Allah and G. Alexandru, IOP Conf. Ser.: Mater. Sci. Eng., 147, 012133 (2016). 
  30. S. W. Gong, L. J. Liu, Q. Zhang and L. Y. Wang, Bull. Korean Chem. Soc., 33, 1279 (2012). 
  31. M. Chen, Y. Yin, C. Tai, Q. Zhang, J. Liu, J. Hu and G. Jiang, Chin. Sci. Bull., 51, 1648 (2006).