DOI QR코드

DOI QR Code

플라즈마 산질화처리된 AISI 420 마르텐사이트 스테인레스 강재의 표면 경도 및 부식 거동

Surface Hardness and Corrosion Behavior of AISI 420 Martensitic Stainless Steels Treated by Plasma Oxy-Nitriding Processing

  • 김진한 (전남대학교 공과대학 신소재공학부) ;
  • 이광민 (전남대학교 공과대학 신소재공학부)
  • Jinhan Kim (School of Materials Science and Engineering, Chonnam National University) ;
  • Kwangmin Lee (School of Materials Science and Engineering, Chonnam National University)
  • 투고 : 2023.06.14
  • 심사 : 2023.07.20
  • 발행 : 2023.07.27

초록

This study aimed to address the limitations of traditional plasma nitriding methods by implementing a short-term plasma oxy-nitriding treatment on the surface of AISI 420 martensitic stainless steel. This treatment involved the sequential formation of nitride and oxide layers, to enhance surface hardness and corrosion resistance, respectively. The process resulted in the formation of a 20 ㎛-thick nitride layer and a 3 ㎛-thick oxide layer on the steel surface. Initially, the hardness increased by 2.2 times after nitriding, followed by a subsequent decrease of approximately 31 % after oxidation. While the nitriding process reduced corrosion resistance, the subsequent oxidation process led to the formation of a passive oxide film, effectively resolving this issue. The pitting corrosion of the oxide passive film started at 82.6 mVssc, providing better corrosion resistance characteristics than the nitride layer. Consequently, the trade-off between surface hardness and corrosion resistance in plasma oxy-nitrided AISI 420 martensitic stainless steel is anticipated to be recognized as an innovative and comprehensive surface treatment process for biomedical components.

키워드

참고문헌

  1. K. H. Lo, C. H. Shek and J. K. L. Lai, Mater. Sci. Eng., R, 65, 39 (2009).
  2. A. N. Isfahany, H. Saghafian and G. Borhani, J. Alloys Compd., 509, 3931 (2011).
  3. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada and S. Takaki, Mater. Sci. Eng., A, 532, 585 (2012).
  4. H. H. Lu, H. K. Guo, W. G. Zhang and W. Liang, Mater. Lett., 240, 275 (2019).
  5. M. Albertini, M. Herrero-Climent, P. Lazaro, J. V. Rios and F. J. Gil, Mater. Lett., 79, 163 (2012).
  6. A. D. Anjos, C. J. Scheuer, S. F. Brunatto and R. P. Cardoso, Surf. Coat. Technol., 275, 51 (2015).
  7. C. E. Pinedo and W. A. Monteiro, Surf. Coat. Technol., 179, 119 (2004).
  8. L. M. Ferreira, S. F. Brunatto and R. P. Cardoso, Mater. Res., 18, 622 (2015).
  9. B. Larisch, U. Brusky and H. J. Spies, Surf. Coat. Technol., 116-119, 205 (1999).
  10. C. J. Scheuer, F. Possoli, P. C. Borges, R. P. Cardoso and S. F. Brunatto, Electrochim. Acta, 317, 70 (2019).
  11. C. X. Li and T. Bell, Corros. Sci., 46, 1527 (2004).
  12. E. E. Granda-Gutierrez, J. C. Diaz-Guillen, J. A. Diaz-Guillen, M. A. Gonzalez, F. Garcia-Vazquez and R. Munoz, J. Mater. Eng. Perform., 23, 4148 (2014).
  13. Y. Xi, D. Liu and D. Han, Appl. Surf. Sci., 254, 5953 (2008).
  14. S. Son and W. Lee, J. Korean Inst. Surf. Eng., 51, 249 (2018).
  15. C. A. Figueroa, F. Alvarez, Z. Zhang, G. A. Collins and K. T. Short, J. Vac. Sci. Technol., A, 23, 693 (2005).
  16. C. X. Li and T. Bell, Mater. Sci. Technol., 23, 355 (2007).