DOI QR코드

DOI QR Code

Inter-device agreement between spectral domain optical coherence tomography, ultrasound biomicroscopy, and gonioscopy in evaluating the iridocorneal angle in normotensive dogs

  • Su An Kim (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Jaeho Shim (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Seonmi Kang (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Kangmoon Seo (Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University)
  • Received : 2022.10.05
  • Accepted : 2023.03.10
  • Published : 2023.07.31

Abstract

Background: There has not been a thoroughly reported study of the comparison between spectral domain-optical coherence tomography (SD-OCT) with both ultrasound biomicroscopy (UBM) and gonioscopy on the evaluation of the iridocorneal angle (ICA) in dogs. Objectives: To investigate the diagnostic value of SD-OCT for the early detection of narrowing ICA by comparing and assessing inter-device agreement in anterior chamber angle (ACA) measurements obtained by SD-OCT and UBM, and ICA evaluations by gonioscopy. Methods: A total of 28 eyes from 28 client-owned dogs with normal intraocular pressure were included for examination. The ACA and angle opening distance (AOD) were measured from the SD-OCT and UBM images, and gonioscopy images were analyzed using the ICA grade and ZibWest angle index. Results: The mean ACA and AOD for SD-OCT were 28.31° ± 5.37° and 658.42 ± 219.90 ㎛, and for UBM, 28.34° ± 5.82° and 859.29 ± 221.80 ㎛, respectively. The mean difference in ACA between the average values of SD-OCT and UBM measurements was 0.03° with a 95% limit of agreement (LoA) span of 16.2°, indicating positive agreement; that in AOD was 200.85 ㎛ with a 95% LoA span of 1,110.95 ㎛, indicating poor agreement. The Pearson correlation coefficient of the ACA of SD-OCT and ZibWest indices of gonioscopy was 0.624, indicating strong agreement; that of UBM and gonioscopy was 0.43, indicating moderate agreement. Conclusions: SD-OCT is well tolerated by canine patients due to its non-contact method and might be an alternative option for early screening of ICA narrowing in clinical settings.

Keywords

Acknowledgement

This study was supported by BK21 FOUR Future Veterinary Medicine Leading Education and Research Center and the Research Institute for Veterinary Science (RIVS), College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea. In addition, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01058695).

References

  1. Park SB, Sung KR, Kang SY, Jo JW, Lee KS, Kook MS. Assessment of narrow angles by gonioscopy, Van Herick method and anterior segment optical coherence tomography. Jpn J Ophthalmol. 2011;55(4):343-350. https://doi.org/10.1007/s10384-011-0036-0
  2. Silverman RH. High-resolution ultrasound imaging of the eye - a review. Clin Exp Ophthalmol. 2009;37(1):54-67. https://doi.org/10.1111/j.1442-9071.2008.01892.x
  3. Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112(3):391-400. https://doi.org/10.1016/j.ophtha.2004.10.020
  4. Dada T, Sihota R, Gadia R, Aggarwal A, Mandal S, Gupta V. Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment. J Cataract Refract Surg. 2007;33(5):837-840. https://doi.org/10.1016/j.jcrs.2007.01.021
  5. Porporato N, Baskaran M, Tun TA, Sultana R, Tan M, Quah JH, et al. Understanding diagnostic disagreement in angle closure assessment between anterior segment optical coherence tomography and gonioscopy. Br J Ophthalmol. 2020;104(6):795-799. https://doi.org/10.1136/bjophthalmol-2019-314672
  6. Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123(8):1053-1059. https://doi.org/10.1001/archopht.123.8.1053
  7. Rigi M, Bell NP, Lee DA, Baker LA, Chuang AZ, Nguyen D, et al. Agreement between gonioscopic examination and swept source fourier domain anterior segment optical coherence tomography imaging. J Ophthalmol. 2016;2016:1727039.
  8. Sakata LM, Lavanya R, Friedman DS, Aung HT, Gao H, Kumar RS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008;115(5):769-774. https://doi.org/10.1016/j.ophtha.2007.06.030
  9. Tay EL, Yong VK, Lim BA, Sia S, Wong EP, Yip LW. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography. Int J Ophthalmol. 2015;8(2):342-346.
  10. Li Puma MC, Freeman KS, Cleymaet AM, Pederson SL, Crawford AC, Dinger SC, et al. Iridocorneal angle assessment of companion rabbits using gonioscopy, spectral-domain optical coherence tomography (Optovue iVue®), high-resolution ultrasound, and Pentacam® HR imaging. Vet Ophthalmol. 2019;22(6):834-841. https://doi.org/10.1111/vop.12660
  11. Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Exp Ophthalmol. 2009;37(1):81-89. https://doi.org/10.1111/j.1442-9071.2008.01823.x
  12. Park S, Kang S, Lee E, Kwak J, Park E, Lim J, et al. Ultrasound biomicroscopic study of the effects of topical latanoprost on the anterior segment and ciliary body thickness in dogs. Vet Ophthalmol. 2016;19(6):498-503. https://doi.org/10.1111/vop.12339
  13. Dulaurent T, Goulle F, Dulaurent A, Mentek M, Peiffer RL, Isard PF. Effect of mydriasis induced by topical instillations of 0.5% tropicamide on the anterior segment in normotensive dogs using ultrasound biomicroscopy. Vet Ophthalmol. 2012;15 Suppl 1:8-13. https://doi.org/10.1111/j.1463-5224.2011.00898.x
  14. Dubin AJ, Bentley E, Buhr KA, Miller PE. Evaluation of potential risk factors for development of primary angle-closure glaucoma in Bouviers des Flandres. J Am Vet Med Assoc. 2017;250(1):60-67. https://doi.org/10.2460/javma.250.1.60
  15. Ekesten B, Narfstrom K. Correlation of morphologic features of the iridocorneal angle to intraocular pressure in Samoyeds. Am J Vet Res. 1991;52(11):1875-1878. https://doi.org/10.2460/ajvr.1991.52.11.1875
  16. Miller PE, Bentley E. Clinical signs and diagnosis of the canine primary glaucomas. Vet Clin North Am Small Anim Pract. 2015;45(6):1183-1212. https://doi.org/10.1016/j.cvsm.2015.06.006
  17. Zibura AE, Robertson JB, Westermeyer HD. Gonioscopic iridocorneal angle morphology and incidence of postoperative ocular hypertension and glaucoma in dogs following cataract surgery. Vet Ophthalmol. 2021;24 Suppl 1:50-62. https://doi.org/10.1111/vop.12802
  18. Dogan NO. Bland-Altman analysis: A paradigm to understand correlation and agreement. Turk J Emerg Med. 2018;18(4):139-141. https://doi.org/10.1016/j.tjem.2018.09.001
  19. Boslaugh S, Watters PA. Statistics in a Nutshell: A Desktop Quick Reference. Sebastopol: O'Reilly Media; 2008, Chapter 9.
  20. Dastiridou A, Marion KM, Niemeyer M, Francis BA, Sadda SR, Chopra V. Agreement in quantitative anterior chamber angle metrics between RTVue and Cirrus spectral domain optical coherence tomography. J Clin Exp Ophthalmol. 2015;6(3):1000435.
  21. Qin B, Francis BA, Li Y, Tang M, Zhang X, Jiang C, et al. Anterior chamber angle measurements using Schwalbe's line with high-resolution fourier-domain optical coherence tomography. J Glaucoma. 2013;22(9):684-688. https://doi.org/10.1097/IJG.0b013e318264b921
  22. Gibson TE, Roberts SM, Severin GA, Steyn PF, Wrigley RH. Comparison of gonioscopy and ultrasound biomicroscopy for evaluating the iridocorneal angle in dogs. J Am Vet Med Assoc. 1998;213(5):635-638. https://doi.org/10.2460/javma.1998.213.05.635
  23. Leung CK, Li H, Weinreb RN, Liu J, Cheung CY, Lai RY, et al. Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and Visante OCT. Invest Ophthalmol Vis Sci. 2008;49(8):3469-3474. https://doi.org/10.1167/iovs.07-1477
  24. Ma XY, Zhu D, Zou J, Zhang WJ, Cao YL. Comparison of ultrasound biomicroscopy and spectral-domain anterior segment optical coherence tomography in evaluation of anterior segment after laser peripheral iridotomy. Int J Ophthalmol. 2016;9(3):417-423.
  25. Akil H, Dastiridou A, Marion K, Francis B, Chopra V. Repeatability, reproducibility, agreement characteristics of 2 SD-OCT devices for anterior chamber angle measurements. Can J Ophthalmol. 2017;52(2):166-170. https://doi.org/10.1016/j.jcjo.2016.08.019
  26. Almazan A, Tsai S, Miller PE, Lee SS, Vilupuru AS, Burke JA, et al. Iridocorneal angle measurements in mammalian species: normative data by optical coherence tomography. Vet Ophthalmol. 2013;16(2):163-166. https://doi.org/10.1111/j.1463-5224.2012.01030.x
  27. Plummer CE, Komaromy AM, Gelatt KN. The canine glaucomas. In: Gelatt KN, Ben-Shlomo G, Gilger BC, Hendrix DVH, Kern TJ, Plummer CE, editors. Veterinary Ophthalmology. Hoboken: Wiley-Blackwell; 2021, 1173-1214.
  28. Li H, Leung CK, Cheung CY, Wong L, Pang CP, Weinreb RN, et al. Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91(11):1490-1492. https://doi.org/10.1136/bjo.2007.118901