DOI QR코드

DOI QR Code

Analysis of Endophytic Bacterial Communities and Investigation of Core Taxa in Apple Trees

  • Yejin Lee (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Gyeongjun Cho (Division of Agricultural Microbiology, Department of Agricultural Biology, National Institute of Agriculture Science, Rural Development Administration) ;
  • Da-Ran Kim (Research Institute of Life Science, Gyeongsang National University) ;
  • Youn-Sig Kwak (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
  • 투고 : 2023.05.05
  • 심사 : 2023.07.07
  • 발행 : 2023.08.01

초록

Fire blight disease, caused by Erwinia amylovora, is a devastating affliction in apple cultivation worldwide. Chemical pesticides have exhibited limited effectiveness in controlling the disease, and biological control options for treating fruit trees are limited. Therefore, a relatively large-scale survey is necessary to develop microbial agents for apple trees. Here we collected healthy apple trees from across the country to identify common and core bacterial taxa. We analyzed the endophytic bacterial communities in leaves and twigs and discovered that the twig bacterial communities were more conserved than those in the leaves, regardless of the origin of the sample. This finding indicates that specific endophytic taxa are consistently present in healthy apple trees and may be involved in vital functions such as disease prevention and growth. Furthermore, we compared the community metabolite pathway expression rates of these endophyte communities with those of E. amylovora infected apple trees and discovered that the endophyte communities in healthy apple trees not only had similar community structures but also similar metabolite pathway expression rates. Additionally, Pseudomonas and Methylobacterium-Methylorobrum were the dominant taxa in all healthy apple trees. Our findings provide valuable insights into the potential roles of endophytes in healthy apple trees and inform the development of strategies for enhancing apple growth and resilience. Moreover, the similarity in cluster structure and pathway analysis between healthy orchards was mutually reinforcing, demonstrating the power of microbiome analysis as a tool for identifying factors that contribute to plant health.

키워드

과제정보

This research was supported by an agenda research program by the Rural Development Administration (PJ014934).

참고문헌

  1. Breijyeh, Z., Jubeh, B. and Karaman, R. 2020. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25:1340.
  2. Broggini, G. A. L., Duffy, B., Holliger, E., Scharer, H.-J., Gessler, C. and Patocchi, A. 2005. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro) in a Swiss apple orchard. Eur. J. Plant Pathol. 111:93-100. https://doi.org/10.1007/s10658-004-1423-x
  3. FAOSTAT. 2021. Food and agriculture organization of the United Nations. URL http://www.fao.org/faostat/en/#data/QC [7 July 2023].
  4. Fitzpatrick, C. R., Lu-Irving, P., Copeland, J., Guttman, D. S., Wang, P. W., Baltrus, D. A., Dlugosch, K. M. and Johnson, M. T. J. 2018. Chloroplast sequence variation and the efficacy of peptide nucleic acids for blocking host amplification in plant microbiome studies. Microbiome 6:144.
  5. Gramazio, P., Takayama, M. and Ezura, H. 2020. Challenges and prospects of new plant breeding techniques for GABA improvement in crops: tomato as an example. Front. Plant Sci. 11:577980.
  6. Guo, H., Wang, X., Zhang, Y., Du, L. and Sun, H. 2021. Metabolite profiling of plant-microbe interactions: from metabolomics to pathway analysis. Front. Plant Sci. 12:1556.
  7. Henry, C. S., Bernstein, H. C., Weisenhorn, P., Taylor, R. C., Lee, J.-Y., Zucker, J. and Song, H.-S. 2016. Microbial community metabolic modeling: a community data-driven network reconstruction. J. Cell Physiol. 231:2339-2345. https://doi.org/10.1002/jcp.25428
  8. Kohl, J., Kolnaar, R. and Ravensberg, W. J. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10:845.
  9. Le, K. D., Kim, J., Yu, N. H., Kim, B., Lee, C. W. and Kim, J.-C. 2020. Biological control of tomato bacterial wilt, kimchi cabbage soft rot, and red pepper bacterial leaf spot using Paenibacillus elgii JCK-5075. Front. Plant Sci. 11:775.
  10. Liang, X., Zhang, R., Gleason, M. L. and Sun, G. 2022. Sustainable apple disease management in China: challenges and future directions for a transforming industry. Plant Dis. 106:786-799. https://doi.org/10.1094/PDIS-06-21-1190-FE
  11. Lim, G.-H., Singhal, R., Kachroo, A. and Kachroo, P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 55:505-536. https://doi.org/10.1146/annurev-phyto-080516-035406
  12. Massart, S., Martinez-Medina, M. and Jijakli, M. H. 2015. Biological control in the microbiome era: challenges and opportunities. Biol. Control 89:98-108. https://doi.org/10.1016/j.biocontrol.2015.06.003
  13. Mbachu, A. E., Obianom, A. O., Ogbonna, U. S., Mbachu, N. A. and Okoli, F. A. 2022. Mode of attack of microbiological control agents against plant pathogens for sustainable agriculture and food security. Asian J. Agric. Hortic. Res. 9:1-16.
  14. McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  15. Mikicinski, A., Pulawska, J., Molzhigitova, A. and Sobiczewski, P. 2020. Bacterial species recognized for the first time for its biocontrol activity against fire blight (Erwinia amylovora). Eur. J. Plant Pathol. 156:257-272. https://doi.org/10.1007/s10658-019-01885-x
  16. Olivieri, L., Saville, R. J., Gange, A. C. and Xu, X. 2021. Apple endophyte community in relation to location, scion and rootstock genotypes and susceptibility to European canker. FEMS Microbiol. Ecol. 97:fiab131.
  17. Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99:59-63.
  18. Pujol, M., Badosa, E., Cabrefiga, J. and Montesinos, E. 2005. Development of a strain-specific quantitative method for monitoring Pseudomonas fluorescens EPS62e, a novel biocontrol agent of fire blight. FEMS Microbiol. Lett. 249:343-352. https://doi.org/10.1016/j.femsle.2005.06.029
  19. Pusey, P. L., Stockwell, V. O., Reardon, C. L., Smits, T. H. M. and Duffy, B. 2011. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology 101:1234-1241. https://doi.org/10.1094/PHYTO-09-10-0253
  20. Sundin, G. W. and Wang, N. 2018. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56:161-180. https://doi.org/10.1146/annurev-phyto-080417-045946
  21. van der Zwet, T., Orolaza-Halbrendt, N. and Zeller, W. 2016. Fire blight: history, biology, and management. American Phytopathological Society, St. Paul, MN, USA. 421 pp.
  22. Wilson, M. and Lindow, S. E. 1993. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83:117-123. https://doi.org/10.1094/Phyto-83-117
  23. Xu, L., Ravnskov, S., Larsen, J., Nilsson, R. H. and Nicolaisen, M. 2012. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol. Biochem. 46:26-32. https://doi.org/10.1016/j.soilbio.2011.11.010
  24. Zeng, H.-Y. and Yao, N. 2022. Sphingolipids in plant immunity. Phytopathol. Res. 4:20.
  25. Zhao, Y.-Q., Tian, Y.-L., Wang, L.-M., Geng, G.-M., Zhao, W.-J., Hu, B.-S., and Zhao, Y.-F. 2019. Fire blight disease, a fast-approaching threat to apple and pear production in China. J. Integr. Agric. 18:815-820. https://doi.org/10.1016/S2095-3119(18)62033-7