DOI QR코드

DOI QR Code

알루미늄과 마그네슘 첨가가 용융아연 도금강판 도금층의 미세조직과 경도에 미치는 영향

Effects of Al and Mg on the Microstructure and Hardness of the Coating Layer of Hot-dip Galvanized Steel Sheet

  • 성윤제 (전북대학교 신소재공학부) ;
  • 김동규 (전북대학교 신소재공학부) ;
  • 서준기 (전북대학교 신소재공학부) ;
  • 한경현 (전북대학교 신소재공학부) ;
  • 홍범기 (전북대학교 신소재공학부) ;
  • 김강민 (전북대학교 신소재공학부) ;
  • 허성욱 (전북대학교 신소재공학부) ;
  • 박성현 (전북대학교 신소재공학부) ;
  • 임재택 (KG steel 기술연구소) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부) ;
  • 정재길 (전북대학교 신소재공학부)
  • Yoonje Sung (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Donggyu Kim (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jungi Seo (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Kyunghyun Han (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Beomki Hong (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Kangmin Kim (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seounguk Heo (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seonghyun Park (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jae-Taek Im (KG Steel Institute of Technology) ;
  • Seung Bae Son (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seok-Jae Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jae-Gil Jung (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 투고 : 2023.06.07
  • 심사 : 2023.07.20
  • 발행 : 2023.07.30

초록

We investigated the effects of Al and Mg on the microstructure and hardness of the coating layer of galvanized steel sheets, by thermodynamic calculations, X-ray diffraction, scanning electron microscopy, and Vickers hardness tests of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers. Regardless of the alloy composition of the galvanizing bath, a Fe-Al layer was observed between the coating layer and steel sheet. The Zn-0.2Al coating layer consists of major h.c.p. Zn phase and minor f.c.c. Al phase. The fraction of f.c.c. Al phase (containing a significant amount of Zn) of the coating layer increases with increasing the chemical composition of Al of the galvanizing bath. The h.c.p. MgZn2 phase was formed in the Al/Mg-containing Zn-6Al-2Mg and Zn-10Al-5Mg coating layers, forming Zn-Al-MgZn2 eutectic microstructure. The primary MgZn2 phase was additionally formed in the Zn-10Al-5Mg coating layers containing high concentrations of Al and Mg. The Vickers hardness values of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers were 59.1 ± 1.2 HV, 161.2 ± 5.7 HV, and 215.5 ± 40.3 HV, respectively. The addition of Al and Mg increased the hardness of the coating layer by increasing the fraction of the Al phase (containing Zn) and MgZn2 intermetallic compound, which were harder than the Zn phase.

키워드

과제정보

본 연구는 2022년도 철강협회의 지원을 받아, 금속학습그룹 (FSS) 프로젝트를 진행하면서 수행된 연구임.

참고문헌

  1. K. Honda, W. Yamada, and K. Ushioda: Mater. Trans., 49 (2008) 1395.
  2. M. H. Hong, D. G. Kang, D. J. Paik, H. S. Hwang, and S. H. Park: Korean J. Met. Mater., 54 (2016) 723.
  3. A. R. Marder: Prog. Mater. Sci., 45 (2000) 191.
  4. G. M. Song and W. G. Sloof: Surf. Coat. Technol., 205 (2011) 4632.
  5. T. Prosek, J. Hagstrom, D. Persson, N. Fuertes, F. Lindberg, O. Chocholaty, C. Taxen, J. Serak, and D. Thierry: Corros. Sci., 110 (2016) 71.
  6. J. W. Lee, S. J. Kim, and M. S. Oh: Korean J. Met. Mater., 58 (2020) 169.
  7. K. Li, Y. Liu, H. Tu, X. Su, and J. Wang: Surf. Coat. Technol., 306 (2016) 390.
  8. S. Kobayashi and T. Yakou: Mater. Sci. Eng. A, 338 (2002) 44.
  9. W. J. Cheng, Y. Y. Chang, and C. J. Wang: Surf. Coat. Technol., 203 (2008) 401.
  10. S. M. Kang, K. S. Han, Y. J. Kang, K. W. Kim, Y. R. Im, J. S. Moon, K. S. Son, and D. G. Kim: J. Korea Foundry Soc., 32 (2012) 2.
  11. A. Dinsdale, O. Zobac, A. Kroupa, and A. Khvan: Calphad, 68 (2020) 101723.
  12. H. Kania, A. Marek, M. Zoran, M. Splawski, P. Kupczyk, M. Wiewiora, and A. Kupczyk: Materials, 16 (2023) 2162.
  13. J. Yang, J. L. Wang, Y. M. Wu, L. M. Wang, and H. J. Zhang: Mater. Sci. Eng. A, 460 (2007) 296.
  14. Y. Meng, G. Jiang, X. Ju, and J. Hao: Mater. Charact., 129 (2017) 336.
  15. N. Saunders and A. P. Miodownik: CALPHAD-Calculation of Phase Diagrams, Pergamon Materials Series, vol. 1, ed. R.W. Cahn (1998).
  16. R. Ramlau and H. Loffler: Acta Metall., 35 (1987) 2005.
  17. H. Bedboudi, A. Bourbia, M. Draissia, S. Boulkhessaim, and M.Y. Debili: Defect Diffus. Forum, 303 (2010) 39.
  18. T. Ohba, Y. Kitano, and Y. Komura: Acta Crystallogr. C, 40 (1984) 1.
  19. E. McDevitt, Y. Morimoto, and M. Meshii: ISIJ Int., 37 (1997) 776.
  20. M. H. Hong and H. Saka: J. Electron Microsc., 53 (2004) 545.
  21. Z. Liu, R. Li, R. Jiang, X. Li, and M. Zhang: J. Alloys Compd., 687 (2016) 885.
  22. S. H. Lee, J. G. Jung, S. I. Baik, D. N. Seidman, M. S. Kim, Y. K. Lee, and K. Euh: Mater. Sci. Eng. A, 803 (2021) 140719.
  23. T. Y. Ahn, J. G. Jung, E. J. Baek, S. S. Hwang, and K. Euh: J. Alloys Compd., 701 (2017) 660.
  24. T. Y. Ahn, J. G. Jung, E. J. Baek, S. S. Hwang, and K. Euh: Mater. Sci. Eng. A, 695 (2017) 45.
  25. Y. Liu, W. C. Hu, D. J. Li, X. Q. Zeng, and C. S. Xu: Appl. Phys. A, 115 (2014) 323.
  26. M. Krystynova, P. Dolezal, S. Fintova, J. Zapletal, T. Marada, and J. Wasserbauer: Key Eng. Mater., 784 (2018) 61.