DOI QR코드

DOI QR Code

Effect of various surface treatment methods of highly translucent zirconia on the shear bond strength with resin cement

고투명도 지르코니아의 다양한 표면처리 방법이 레진시멘트와의 전단결합강도에 미치는 영향

  • Yu-Seong Kim (Department of Prosthodontics, Institute of Oral Health Science, Ajou University School of Medicine) ;
  • Jin-Woo Choi (Department of Prosthodontics, Institute of Oral Health Science, Ajou University School of Medicine) ;
  • Hee-Kyung Kim (Department of Prosthodontics, Institute of Oral Health Science, Ajou University School of Medicine)
  • 김유성 (아주대학교 의과대학 치과학교실 치과보철과) ;
  • 최진우 (아주대학교 의과대학 치과학교실 치과보철과) ;
  • 김희경 (아주대학교 의과대학 치과학교실 치과보철과)
  • Received : 2022.12.27
  • Accepted : 2023.02.01
  • Published : 2023.07.31

Abstract

Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength of two types of zirconia (3-TZP and 5Y-PSZ) with resin cement. Materials and methods. Two different types of zirconia specimens with a fully sintered size of 14.0×14.0×2.0 mm3 were prepared, polished with 400, 600, and 800 grit silicon carbide paper, and buried in epoxy resin. They were classified into four groups each control, sandblasting, primer, and sandblasting & primer. Cylindrical resin adhered to the surface-treated zirconia with resin cement. It was stored in distilled water (37℃) for 24 hours, and a shear bond strength test was performed. The normality of the experimental group was confirmed with the Kolmogorov-Smirnov & Shapiro-Wilk test. The interaction and statistical difference were analyzed using a two-way ANOVA. A post-hoc analysis was performed using Dunnett T3. Results. As a result of two-way ANOVA, there was no significant difference in shear bonding strength between zirconia types (P > .05), but there was a significant correlation in the sandblasting, primer, and alumina sandblasting & primer group (P < .05). Dunnett T3 post-test showed that, regardless of the type of zirconia, shear bonding strength was sandblasting & primer > Primer > sandblasting > control group (P < .05). Conclusion. There was no difference in shear bond strength between the types of zirconia. The highest shear bond strength was shown when the mechanical and chemical treatments of the zirconia surface was performed simultaneously.

목적. 이 연구의 목적은 알루미나 입자 공기분사 및 프라이머 표면처리가 각각 두 가지 종류의 지르코니아(3 mol% yttria-stabilized tetragonal zirconia polycrystal; 3Y-TZP, 5 mol% partially stabilized zirconia; 5Y-PSZ)와 레진시멘트의 전단응력에 미치는 영향을 평가하는 것이다. 재료 및 방법. 완전 소결된 14.0×14.0×2.0 mm 크기의 두가지 다른 종류의 지르코니아 시편(3Y-TZP, 5Y-PSZ)을 각각 40개씩 제작하고 400, 600, 800 그릿의 실리콘 카바이드 종이로 연마 후 에폭시 레진에 매립하였다. 이들을 각각 4개의 대조군, 50 ㎛ 알루미나 입자 공기분사 사용군, 프라이머 사용군, 50 ㎛ 알루미나 입자 공기분사와 프라이머로 표면을 처리한 한 후 레진시멘트(PANAVIA V5)로 접착하였다. 그 후 증류수(37℃)에 24시간 보관 후 전단결합강도 실험을 시행, Kolmogorov-Smirnov & Shapiro-Wilk test를 사용해서 정규성을 확인한 후, 모수적 방법인 이원배치분산분석을 사용하여 지르코니아 종류 및 표면처리 방법에 따른 전단결합강도의 상호작용 및 통계적 차이를 분석하였다. 이후 Dunnett T3를 이용해 사후검정을 하였다. 결과. 이배치분산분석 결과 지르코니아 종류에 따른 전단결합강도는 각 군간에 유의미한 차이를 보이지 않았지만(P > .05), 표면처리 방법에 따른 전단결합강도는 50 ㎛ 알루미나 입자 공기분사 사용군, 프라이머 사용군, 50 ㎛ 알루미나 공기 분사와 프라이머를 사용한 군에서는 유의미한 상관관계를 보였다(P < .05). Dunnett T3 사후검정 결과 지르코니아의 종류에 상관없이 전단결합강도는 샌드블라스팅 & 프라이머 > 프라이머 > 샌드블라스팅 > 대조군 순서로 나타났다(P < .05). 결론. 본 연구 결과에 따르면 지르코니아 종류에 따른 전단결합 강도 차이는 없었다. 지르코니아 표면의 기계적 화학적 표면처리를 동시에 했을 때 가장 높은 전단결합강도를 보였다.

Keywords

References

  1. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  2. Blatz MB, Chiche G, Holst S, Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int 2007;38:745-53.
  3. Luthardt RG, Holzhuter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, Walter M. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res 2002;81:487-91. https://doi.org/10.1177/154405910208100711
  4. Phark JH, Duarte S Jr, Blatz M, Sadan A. An in vitro evaluation of the long-term resin bond to a new densely sintered high-purity zirconium-oxide ceramic surface. J Prosthet Dent 2009;101:29-38. https://doi.org/10.1016/S0022-3913(08)60286-3
  5. Luthardt R, Weber A, Rudolph H, Schone C, Quaas S, Walter M. Design and production of dental prosthetic restorations: basic research on dental CAD/CAM technology. Int J Comput Dent 2002;5:165-76.
  6. Kakehashi Y, Luthy H, Naef R, Wohlwend A, Scharer P. A new all-ceramic post and core system: clinical, technical, and in vitro results. Int J Periodontics Restorative Dent 1998;18:586-93.
  7. Meyenberg KH, Luthy H, Scharer P. Zirconia posts: a new all-ceramic concept for nonvital abutment teeth. J Esthet Dent 1995;7:73-80. https://doi.org/10.1111/j.1708-8240.1995.tb00565.x
  8. Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003;90:325-31. https://doi.org/10.1016/S0022-3913(03)00514-6
  9. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Scharer P. Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont 2004;17:285-90.
  10. Palacios RP, Johnson GH, Phillips KM, Raigrodski AJ. Retention of zirconium oxide ceramic crowns with three types of cement. J Prosthet Dent 2006;96:104-14. https://doi.org/10.1016/j.prosdent.2006.06.001
  11. Ozcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J 2008;27:99-104. https://doi.org/10.4012/dmj.27.99
  12. Aboushelib MN, Matinlinna JP, Salameh Z, Ounsi H. Innovations in bonding to zirconia-based materials: Part I. Dent Mater 2008;24:1268-72. https://doi.org/10.1016/j.dental.2008.02.010
  13. Ernst CP, Cohnen U, Stender E, Willershausen B. In vitro retentive strength of zirconium oxide ceramic crowns using different luting agents. J Prosthet Dent 2005;93:551-8. https://doi.org/10.1016/j.prosdent.2005.04.011
  14. Kim HK, Yoo KW, Kim SJ, Jung CH. Phase transformations and subsurface changes in three dental zirconia grades after sandblasting with various Al2O3 particle sizes. Materials (Basel) 2021;14:5321.
  15. Kim HK, Ahn B. Effect of Al2O3 sandblasting particle size on the surface topography and residual compressive stresses of three different dental zirconia grades. Materials (Basel) 2021;14:610.
  16. Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater 2004;71:381-6. https://doi.org/10.1002/jbm.b.30097
  17. Koizumi H, Nakayama D, Komine F, Blatz MB, Matsumura H. Bonding of resin-based luting cements to zirconia with and without the use of ceramic priming agents. J Adhes Dent 2012;14:385-92.
  18. Thammajaruk P, Inokoshi M, Chong S, Guazzato M. Bonding of composite cements to zirconia: a systematic review and meta-analysis of in vitro studies. J Mech Behav Biomed Mater 2018;80:258-68. https://doi.org/10.1016/j.jmbbm.2018.02.008
  19. da Silva EM, Miragaya L, Sabrosa CE, Maia LC. Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water. J Prosthet Dent 2014;112:568-75. https://doi.org/10.1016/j.prosdent.2013.12.003
  20. Kim JH, Chae SY, Lee Y, Han GJ, Cho BH. Effects of multipurpose, universal adhesives on resin bonding to zirconia ceramic. Oper Dent 2015;40:55-62. https://doi.org/10.2341/13-303-L
  21. Kern M, Barloi A, Yang B. Surface conditioning influences zirconia ceramic bonding. J Dent Res 2009;88:817-22. https://doi.org/10.1177/0022034509340881
  22. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent 2018;120:132-7. https://doi.org/10.1016/j.prosdent.2017.08.004
  23. Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lumkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int 2017;48:369-80.
  24. Kolakarnprasert N, Kaizer MR, Kim DK, Zhang Y. New multi-layered zirconias: Composition, microstructure and translucency. Dent Mater 2019;35:797-806. https://doi.org/10.1016/j.dental.2019.02.017
  25. Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater 2019;91:24-34. https://doi.org/10.1016/j.actbio.2019.04.043
  26. Jerman E, Lumkemann N, Eichberger M, Zoller C, Nothelfer S, Kienle A, Stawarczyk B. Evaluation of translucency, Marten's hardness, biaxial flexural strength and fracture toughness of 3Y-TZP, 4Y-TZP and 5Y-TZP materials. Dent Mater 2021;37:212-22. https://doi.org/10.1016/j.dental.2020.11.007
  27. Liu HL, Lin CL, Sun MT, Chang YH. Numerical investigation of macro- and micro-mechanics of a ceramic veneer bonded with various cement thicknesses using the typical and submodeling finite element approaches. J Dent 2009;37:141-8. https://doi.org/10.1016/j.jdent.2008.10.009
  28. May LG, Kelly JR, Bottino MA, Hill T. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: multi-physics FEA modeling and monotonic testing. Dent Mater 2012;28:e99-109. https://doi.org/10.1016/j.dental.2012.04.033
  29. Qeblawi DM, Campillo-Funollet M, Munoz CA. In vitro shear bond strength of two self-adhesive resin cements to zirconia. J Prosthet Dent 2015;113:122-7. https://doi.org/10.1016/j.prosdent.2014.08.006
  30. Anunmana C, Anusavice KJ, Mecholsky JJ Jr. Interfacial toughness of bilayer dental ceramics based on a short-bar, chevron-notch test. Dent Mater 2010;26:111-7. https://doi.org/10.1016/j.dental.2009.09.003
  31. Aboushelib MN. Evaluation of zirconia/resin bond strength and interface quality using a new technique. J Adhes Dent 2011;13:255-60.
  32. Cheung GJ, Botelho MG. Zirconia surface treatments for resin bonding. J Adhes Dent 2015;17:551-8.
  33. Chen B, Yan Y, Xie H, Meng H, Zhang H, Chen C. Effects of tribochemical silica coating and alumina-particle air abrasion on 3Y-TZP and 5Y-TZP: evaluation of surface hardness, roughness, bonding, and phase transformation. J Adhes Dent 2020;22:373-82.
  34. Vanderlei A, Bottino MA, Valandro LF. Evaluation of resin bond strength to yttria-stabilized tetragonal zirconia and framework marginal fit: comparison of different surface conditionings. Oper Dent 2014;39:50-63. https://doi.org/10.2341/12-269-L
  35. Yang L, Chen B, Xie H, Chen Y, Chen Y, Chen C. Durability of resin bonding to zirconia using products containing 10-Methacryloyloxydecyl dihydrogen phosphate. J Adhes Dent 2018;20:279-87.
  36. Bomicke W, Schurz A, Krisam J, Rammelsberg P, Rues S. Durability of resin-zirconia bonds produced using methods available in dental practice. J Adhes Dent 2016;18:17-27.
  37. Shin YJ, Shin Y, Yi YA, Kim J, Lee IB, Cho BH, Son HH, Seo DG. Evaluation of the shear bond strength of resin cement to Y-TZP ceramic after different surface treatments. Scanning 2014;36:479-86. https://doi.org/10.1002/sca.21142
  38. Sarmento HR, Campos F, Sousa RS, Machado JP, Souza RO, Bottino MA, Ozcan M. Influence of air-particle deposition protocols on the surface topography and adhesion of resin cement to zirconia. Acta Odontol Scand 2014;72:346-53. https://doi.org/10.3109/00016357.2013.837958
  39. Scaminaci Russo D, Cinelli F, Sarti C, Giachetti L. Adhesion to zirconia: a systematic review of current conditioning methods and bonding materials. Dent J (Basel) 2019;7:74.
  40. Shimizu H, Inokoshi M, Takagaki T, Uo M, Minakuchi S. Bonding efficacy of 4-META/MMA-TBB resin to surface-treated highly translucent dental zirconia. J Adhes Dent 2018;20:453-9.
  41. Yagawa S, Komine F, Fushiki R, Kubochi K, Kimura F, Matsumura H. Effect of priming agents on shear bond strengths of resin-based luting agents to a translucent zirconia material. J Prosthodont Res 2018;62:204-9. https://doi.org/10.1016/j.jpor.2017.08.011