DOI QR코드

DOI QR Code

Effect of Vascular Bundles and Fiber Sheaths in Nodes and Internodes of Gigantochloa apus Bamboo Strips on Tensile Strength

  • Atmawi DARWIS (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • Anne HADIYANE (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • Endah SULISTYAWATI (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • Ihak SUMARDI (School of Life Sciences and Technology, Institut Teknologi Bandung)
  • 투고 : 2023.02.02
  • 심사 : 2023.06.29
  • 발행 : 2023.07.25

초록

Bamboo culm is in the form of a tube/pipe, composed of internodes which are bounded by a partition/diaphragm (node). Anatomically, bamboo is composed of vascular bundles and parenchyma ground tissue. One of the constituents of vascular bundles is fibers that are grouped to form a fiber sheath. The anatomical structure of the nodes and internodes is thought to influence the strength of bamboo strips, including tensile strength. This study aimed to determine the characteristics of vascular bundles (distribution and fiber percentage) and their effects on the density and tensile strength of Gigantochloa apus bamboo strips with and without nodes. The bamboo culms were divided into three parts (outer, middle, and inner) along the radial direction. The results showed that the distribution of vascular bundles and percentage of fiber sheaths decreased significantly from the outer to the inner layer. This also had a significantly decreased density and tensile strength. Furthermore, the number of vascular bundles (in the transverse plane) was greater in the internodes than in the nodes. Anatomically, the orientation of the vascular bundles at irregular nodes is observed in the radial and tangential planes, where the direction is not only in the axial direction, but also in the radial and tangential directions. This caused the tensile strength of the G. apus bamboo strips to be lower at the nodes than at the internodes.

키워드

과제정보

I would like to thank the Institut Teknologi Bandung for financial support of the research via the Research, Community Service and Innovation Program (P3MI-ITB 2018).

참고문헌

  1. Abdullah, A.H.D., Karlina, N., Rahmatiya, W., Mudaim, S., Patimah, Fajrin, A.R. 2017. Physical and mechanical properties of five Indonesian bamboos. IOP Conference Series: Earth and Environmental Science 60: 012014.
  2. Amada, S., Ichikawa, Y., Munekata, T., Nagase, Y., Shimizu, H. 1997. Fiber texture and mechanical graded structure of bamboo. Composites Part B: Engineering 28(1-2): 13-20. https://doi.org/10.1016/S1359-8368(96)00020-0
  3. Anwar, U.M.K., Paridah, M.T., Hamdan, H., Sapuan, S.M., Bakar, E.S. 2009. Effect of curing time on physical and mechanical properties of phenolic-treated bamboo strips. Industrial Crops and Products 29(1): 214-219. https://doi.org/10.1016/j.indcrop.2008.05.003
  4. Anwar, U.M.K., Zaidon, A., Hamdan, H., Tamizi, M.M. 2005. Physical and mechanical properties of Gigantochloa scortechinii bamboo splits and strips. Journal of Tropical Forest Science 17(1): 1-12.
  5. Arsyad, W.O.M., Efiyanti, L., Trisatya, D.R. 2020. Termiticidal activity and chemical components of bamboo vinegar against subterranean termites under different pyrolysis temperatures. Journal of the Korean Wood Science and Technology 48(5): 641-650. https://doi.org/10.5658/WOOD.2020.48.5.641
  6. Bahtiar, E.T., Nugroho, N., Surjokusumo, S., Karlinasari, L., Darwis, A. 2014. Rasio ikatan pembuluh sebagai substitusi rasio modulus elastisitas pada analisa layer system pada bilah bambu dan bambu laminasi. Jurnal Teknik Sipil 21(2): 147-162. https://doi.org/10.5614/jts.2014.21.2.6
  7. Bahtiar, E.T., Nugroho, N., Surjokusumo, S., Karlinasari, L., Nawawi, D.S., Lestari, D.P. 2016. Pengaruh komponen kimia dan ikatan pembuluh terhadap kekuatan tarik bambu. Jurnal Teknik Sipil 23(1): 31-40.
  8. Cha, M.S., Yoon, S.J., Kwon, J.H., Byeon, H.S., Park, H.M. 2022. Mechanical properties of cork composite boards reinforced with metal, glass fiber, and carbon fiber. Journal of the Korean Wood Science and Technology 50(6): 427-435. https://doi.org/10.5658/WOOD.2022.50.6.427
  9. Darwis, A., Iswanto, A.H. 2018. Morphological characteristics of Bambusa vulgaris and the distribution and shape of vascular bundles therein. Journal of the Korean Wood Science and Technology 46(4): 315-322. https://doi.org/10.5658/WOOD.2018.46.4.315
  10. Darwis, A., Iswanto, A.H., Jeon, W.S., Kim, N.H., Wirjosentono, B., Susilowati, A., Hartono, R. 2020. Variation of quantitative anatomical characteristics in the culm of Belangke bamboo (Gigantochloa pruriens). BioResources 15(3): 6617-6626. https://doi.org/10.15376/biores.15.3.6617-6626
  11. Darwis, A., Sumardi, I., Suhaya, Y., Sunarya, S. 2018. Characteristic of vascular bundles and morphology of Gigantochloa apus (J.A. and J.H. Schulltes) Kurz culm. Asian Journal of Plant Sciences 17(3): 129-133. https://doi.org/10.3923/ajps.2018.129.133
  12. Dransfield, S., Widjaja, E.A. 1995. Plant Resources of South-East Asia. No. 7: Bamboos. Backhuys, Leiden, The Netherlands. p. 189.
  13. Galih, N.M., Yang, S.M., Yu, S.M., Kang, S.G. 2020. Study on the mechanical properties of tropical hybrid cross laminated timber using bamboo laminated board as core layer. Journal of the Korean Wood Science and Technology 48(2): 245-252. https://doi.org/10.5658/WOOD.2020.48.2.245
  14. Gao, X., Zhu, D., Fan, S., Rahman, M.Z., Guo, S., Chen, F. 2022. Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: A review. Journal of Materials Research and Technology 19: 1162-1190. https://doi.org/10.1016/j.jmrt.2022.05.077
  15. Grosser, D., Liese, W. 1971. On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Science and Technology 5(4): 290-312. https://doi.org/10.1007/BF00365061
  16. Hadi, Y.S., Herliyana, E.N., Pari, G., Pari, R., Abdillah, I.B. 2022. Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Journal of the Korean Wood Science and Technology 50(1): 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
  17. Huang, P., Chang, W.S., Ansell, M.P., John Chew, Y.M., Shea, A. 2015. Density distribution profile for inter- nodes and nodes of Phyllostachys edulis (Moso bamboo) by computer tomography scanning. Construction and Building Materials 93: 197-204. https://doi.org/10.1016/j.conbuildmat.2015.05.120
  18. Hwang, J.W., Oh, S.W. 2023. Mechanical properties and density profile of ceramics manufactured from a board mixed with sawdust and mandarin peels. Journal of the Korean Wood Science and Technology 51(2): 98-108. https://doi.org/10.5658/WOOD.2023.51.2.98
  19. Iswanto, A.H., Madyaratri, E.W., Hutabarat, N.S., Zunaedi, E.R., Darwis, A., Hidayat, W., Susilowati, A., Adi, D.S., Lubis, M.A.R., Sucipto, T., Fatriasari, W., Antov, P., Savov, V., Hua, L.S. 2022. Chemical, physical, and mechanical properties of Belangke bamboo (Gigantochloa pruriens) and its application as a reinforcing material in particleboard manufacturing. Polymers 14(15): 3111.
  20. Jain, B., Mallya, R., Nayak, S.Y., Heckadka, S.S., Prabhu, S., Mahesha, G.T., Sancheti, G. 2022. Influence of alkali and silane treatment on the physicomechanical properties of Grewia serrulata fibres. Journal of the Korean Wood Science and Technology 50(5): 325-337. https://doi.org/10.5658/WOOD.2022.50.5.325
  21. Jeon, W.S., Byeon, H.S., Kim, N.H. 2018a. Anatomical characteristics of Korean Phyllostachys pubescens by age. Journal of the Korean Wood Science and Technology 46(3): 231-240. https://doi.org/10.5658/WOOD.2018.46.3.231
  22. Jeon, W.S., Kim, Y.K., Lee, J.A., Kim, A.R., Darsan, B., Chung, W.Y., Kim, N.H. 2018b. Anatomical characteristics of three Korean bamboo species. Journal of the Korean Wood Science and Technology 46(1): 29-37. https://doi.org/10.5658/WOOD.2018.46.1.29
  23. Kenneth, O.I., Uzodimma, U.O. 2021. Evaluation of the compressive strength of bamboo culms under node and internode conditions. Saudi Journal of Civil Engineering 5(8): 251-258.
  24. Kumar, D., Mandal, A. 2022. Review on manufacturing and fundamental aspects of laminated bamboo pro- ducts for structural applications. Construction and Building Materials 348: 128691.
  25. Lee, H.W., Lee, E.J. 2021. Effects of hot-air heat treatment on the surface color of Phyllostachys bambusoides bamboo. Journal of the Korean Wood Science and Technology 49(6): 566-573. https://doi.org/10.5658/WOOD.2021.49.6.566
  26. Li, H., Shen, S. 2011. The mechanical properties of bamboo and vascular bundles. Journal of Materials Research 26(21): 2749-2756. https://doi.org/10.1557/jmr.2011.314
  27. Li, J., Xu, H., Yu, Y., Chen, H., Yi, W., Wang, H. 2021a. Intelligent analysis technology of bamboo structure. Part I: The variability of vascular bundles and fiber sheath area. Industrial Crops and Products 174: 114163.
  28. Li, S., Yang, S., Shang, L., Liu, X., Ma, J., Ma, Q., Tian, G. 2021b. 3D visualization of bamboo node's vascular bundle. Forests 12(12): 1799.
  29. Li, W., Liu, M., Zhai, H., Wang, H., Yu, Y. 2020. Preparing highly durable bamboo materials via bulk furfurylation. Construction and Building Materials 262: 120726.
  30. Liese, W. 1987. Anatomy and properties of bamboo. In: Rao, A.N. and Dhanarajan, G. (eds), Hangzhou, China, Recent Research on Bamboos: Proceedings of the International Bamboo Workshop, pp. 196-208.
  31. Liu, H., Jiang, Z., Zhang, X., Liu, X., Sun, Z. 2014. Effect of fiber on tensile properties of Moso bamboo. BioResources 9(4): 6888-6898 https://doi.org/10.15376/biores.9.4.6888-6898
  32. Liu, P., Zhou, Q., Fu, F., Li, W. 2021. Effect of bamboo nodes on the mechanical properties of P. edulis (Phyllostachys edulis) bamboo. Forests 12(10): 1309.
  33. Maulana, M.I., Jeon, W.S., Purusatama, B.D., Nawawi, D.S., Nikmatin, S., Sari, R.K., Hidayat, W., Febrianto, F., Kim, J.H., Lee, S.H., Kim, N.H. 2021a. Variation of anatomical characteristics within the culm of the three Gigantochloa species from Indonesia. BioResources 16(2): 3596-3606. https://doi.org/10.15376/biores.16.2.3596-3606
  34. Maulana, M.I., Murda, R.A., Purusatama, B.D., Sari, R.K., Nawawi, D.S., Nikmatin, S., Hidayat, W., Lee, S.H., Febrianto, F., Kim, N.H. 2021b. Effect of alkali-washing at different concentration on the chemical compositions of the steam treated bamboo strands. Journal of the Korean Wood Science and Technology 49(1): 14-22. https://doi.org/10.5658/WOOD.2021.49.1.14
  35. Oh, S. 2022. Experimental study of bending and bearing strength of parallel strand lumber (PSL) from Japanese Larch veneer strand. Journal of the Korean Wood Science and Technology 50(4): 237-245. https://doi.org/10.5658/WOOD.2022.50.4.237
  36. Osorio, L., Trujillo, E., Lens, F., Ivens, J., Verpoest, I., Vuure, A.W.V. 2018. In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. Journal of Reinforced Plastics and Composites 37(17): 1099-1113. https://doi.org/10.1177/0731684418783055
  37. Razak, W., Mohd, T.M., Shafiqur, R., Mohammed, A.S., Othman, S., Mahmud, S., Mohd, S. 2012. Relation- ship between physical, anatomical and strength properties of 3-year-old cultivated tropical bamboo Gigantochloa scortechinii. Journal of Agricultural and Biological Science 7(10): 782-791.
  38. Rochim, A., Latifah, K., Supriyadi, B. 2020. Characterization of compression and tensile properties of bamboo Jawa (Gigantochloa atter) and bamboo Apus (Gigantochloa apus) for application as soil reinforcement. IOP Conference Series: Earth and Environmental Science 498: 012040.
  39. Setyayunita, T., Widyorini, R., Marsoem, S.N., Irawati, D. 2022. Effect of different conditions of sodium chloride treatment on the characteristics of kenaf fiber bundles. Journal of the Korean Wood Science and Technology 50(6): 392-403. https://doi.org/10.5658/WOOD.2022.50.6.392
  40. Shang, L., Liu, X., Jiang, Z., Tian, G., Yang, S. 2021. Variation in tensile properties of single vascular bundles in moso bamboo. Forest Products Journal 71(3): 246-251. https://doi.org/10.13073/FPJ-D-21-00002
  41. Sumardi, I., Alamsyah, E.M., Suhaya, Y., Dungani, R., Sulastiningsih, I.M., Pramestie, S.R. 2022. Development of bamboo zephyr composite and the physical and mechanical properties. Journal of the Korean Wood Science and Technology 50(2): 134-147. https://doi.org/10.5658/WOOD.2022.50.2.134
  42. Sumardi, I., Darwis, A., Saad, S., Rofii, M.N. 2020. Quality enhancement of falcataria-wood through impregnation. Journal of the Korean Wood Science and Technology 48(5): 722-731. https://doi.org/10.5658/WOOD.2020.48.5.722
  43. Verma, C.S., Chariar, V.M. 2012. Development of layered laminate bamboo composite and their mechanical properties. Composites Part B: Engineering 43(3): 1063-1069. https://doi.org/10.1016/j.compositesb.2011.11.065
  44. Wahab, R., Mustapa, M.T., Sulaiman, O., Mohamed, A., Hassan, A., Khalid, I. 2010. Anatomical and physical properties of cultivated two- and four-year-old Bambusa vulgaris. Sains Malaysiana 39(4): 571-579.
  45. Wang, F., Shao, Z. 2020. Study on the variation law of bamboo fibers' tensile properties and the organization structure on the radial direction of bamboo stem. Industrial Crops and Products 152: 112521.
  46. Wang, H., An, X., Li, W., Wang, H., Yu, Y. 2014. Variation of mechanical properties of single bamboo fibers (Dendrocalamus latiflorus Munro) with respect to age and location in culms. Holzforschung 68(3): 291-297. https://doi.org/10.1515/hf-2013-0081
  47. Widjaja, E.A. 2001. Identikit Jenis-Jenis Bambu di Jawa. Puslitbang Biologi-LIPI, Bogor, Indonesia.