Acknowledgement
This work presented in this paper was funded by the Graduate Innovation Program of China University of Mining and Technology (2022WLJCRCZL038) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22 2574).
References
- Afshani, A. and Akagi, H. (2015), "Artificial ground freezing application in shield tunneling", Japanese Geotech.Society Special Publication, 3(2), 71-75. https://doi.org/10.3208/jgssp.v03.j01.
- Alkire, B.D. and Morrison, J.M. (1983), "Change in soil structure due to freeze-thaw and repeated loading", Transport. Res. Record, 918, 15-21.
- Chamberlain, E.J. and Gow, A.J. (1979), "Effect of freezing and thawing on the permeability and structure of soils", Eng. Geol., 13, 73-92. https://doi.org/10.1016/0013-7952(79)90022-X.
- Cheng, S., Wang, Q., Fu, H., Wang, J., Han, Y., Shen, J. and Lin, S. (2021), "Effect of freeze-thaw cycles on the mechanical properties and constitutive model of saline soil", Geomech. Eng., 27(4), 309-322. https://doi.org/10.12989/gae.2021.27.4.309.
- Cui, Z.D., He, P.P. and Yang, W.H. (2014), "Mechanical properties of a silty clay subjected to freezing-thawing", Cold Reg. Sci. Technol., 98, 26-34. https://doi.org/10.1016/j.coldregions.2013.10.009.
- Cui, Z.D. and Zhang, Z.L. (2015), "Comparison of dynamic characteristics of the silty clay before and after freezing and thawing under the subway vibration loading", Cold Reg. Sci. Technol., 119, 29-36. https://doi.org/10.1016/j.coldregions.2015.07.004.
- Cui, Z.D., Zhang, Z.L., Yuan, L., Zhan, Z.X. and Zhang, W.K. (2019), "Design of underground structures", Springer Press, Singapore. https://doi.org/10.1007/978-981-13-7732-7.
- Cui, Z.D., Zhang, L.J. and Zhan, Z.X. (2023), "Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading", Geomech. Eng., 32(4), 411-426. https://doi.org/10.12989/gae.2023.32.4.411.
- Ghazavi, M. and Roustaei, M. (2013), "Freeze-thaw performance of clayey soil reinforced with geotextile layer", Cold Reg. Sci. Technol., 89, 22-29. https://doi.org/10.1016/j.coldregions.2013.01.002.
- Guo, L., Liu, L.G., Wang, J., Jin, H.X. and Fang, Y. (2020), "Long term cyclic behavior of saturated soft clay under different drainage conditions", Soil Dyn. Earthq. Eng., 139. https://doi.org/10.1016/j.soildyn.2020.106362.
- Iida, H., Hiroto, T., Yoshida, N. and Iwafuji, M. (1996), "Damage to Daikai subway station", Soils Found., 36, 283-300. https://doi.org/10.3208/sandf.36.Special_283.
- Jin, H., Go, G.-H., Ryu, B.H. and Lee, J. (2021), "Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow", Geomech. Eng., 27(5), 433-445. https://doi.org/10.12989/gae.2021.27.5.433.
- Kang, M. and Lee, J.S. (2015), "Evaluation of the freezing-thawing effect in sand-silt mixtures using elastic waves and electrical resistivity", Cold Reg. Sci. Technol., 113, 1-11. https://doi.org/10.1016/j.coldregions.2015.02.004.
- Lei, H.Y., Song, Y.J., Qi, Z.Y., Liu, J.J. and Liu, X. (2019), "Accumulative plastic strain behaviors and microscopic structural characters of artificially freeze-thaw soft clay under dynamic cyclic loading", Cold Reg. Sci. Technol., 168. https://doi.org/10.1016/j.cohiregions.2019.102895.
- Li, Q.L., Ling, X.Z., Wang, L.N., Zhang, F., Wang, J.H. and Xu, P.J. (2013), "Accumulative strain of clays in cold region under long-term low-level repeated cyclic loading: Experimental evidence and accumulation model", Cold Reg. Sci. Technol., 94, 45-52. https://doi.org/10.1016/j.coldregions.2013.06.008.
- Lin, B., Zhang, F., Feng, D.C., Tang, K.W. and Feng, X. (2017), "Accumulative plastic strain of thawed saturated clay under long-term cyclic loading", Eng. Geol., 231, 230-237. https://doi.org/10.1016/j.enggeo.2017.09.028.
- Ling, X.Z., Li, Q.L., Wang, L.A., Zhang, F., An, L.S. and Xu, P.J. (2013), "Stiffness and damping radio evolution of frozen clays under long-term low-level repeated cyclic loading: Experimental evidence and evolution model", Cold Reg. Sci. Technol., 86, 45-54. https://doi.org/10.1016/j.coldregions.2012.11.002.
- Ling, X.Z., Zhu, Z.Y., Zhang, F., Chen, S.J., Wang, L.N., Gao, X. and Lu, Q.R. (2009), "Dynamic elastic modulus for frozen soil from the embankment on Beiluhe Basin along the Qinghai-Tibet Railway", Cold Reg. Sci. Technol., 57(1), 7-12. https://doi.org/10.1016/j.coldregions.2009.01.004.
- Mansour, M.F. (2018), "Constitutive behavior of Port-Said Clay under seismic and small strain static conditions", Ain Shams Eng. J., 9(4), 2983-2991. https://doi.org/10.1016/j.asej.2018.06.005.
- Murcia-Delso, J., Alcocer, S.M., Arnau, O., Martinez, Y. and Muria-Vila, D. (2020), "Seismic rehabilitation of concrete buildings after the 1985 and 2017 earthquakes in Mexico City", Earthq. Spectra, 36(2), 175-198. https://doi.org/10.1177/8755293020957372.
- Niemunis, A., Wichtmann, T. and Triantafyllidis, T. (2005), "A high-cycle accumulation model for sand", Comput. Geotech., 32(4), 245-263. https://doi.org/10.1016/j.compgeo.2005.03.002.
- Puppala, A.J., Saride, S. and Chomtid, S. (2009), "Experimental and modeling studies of permanent strains of subgrade soils", J. Geotech. Geoenviron. Eng., 135, 1379-1389. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000163.
- Simonsen, E., Vincent C. Janoo, M.A. and Isacsson, U. (2002), "Resilient properties of unbound road materials during seasonal frost conditions", J. Cold Reg. Eng., 16, 28-50. https://doi.org/10.1061/(ASCE)0887-381X(2002)16:1(28).
- Singh, P., Bhartiya, P., Chakraborty, T. and Basu, D. (2023), "Numerical investigation and estimation of active earth thrust on gravity retaining walls under seismic excitation", Soil Dyn. Earthq. Eng., 167, 107798. https://doi.org/10.1016/j.soildyn.2023.107798.
- Tang, Y.Q. and Yan, J.J. (2015), "Effect of freeze-thaw on hydraulic conductivity and microstructure of soft soil in Shanghai area", Environ. Earth Sci., 73(11), 7679-7690. https://doi.org/10.1007/s12665-014-3934-x.
- Wang, D., Liu, E.L., Zhang, D., Yue, P., Wang, P., Kang, J. and Yu, Q.H. (2021), "An elasto-plastic constitutive model for frozen soil subjected to cyclic loading", Cold Reg. Sci. Technol., 189, 103341. https://doi.org/10.1016/j.coldregions.2021.103341.
- Wang, D.Y., Ma, W., Niu, Y.H., Chang, X.X. and Wen, Z. (2007), "Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay", Cold Reg. Sci. Technol., 48(1), 34-43. https://doi.org/10.1016/j.coldregions.2006.09.008.
- Wang, S., Wang, Q., Xu, J., Ding, J., Qi, J., Yang, Y. and Liu, F. (2019), "Thaw consolidation behavior of frozen soft clay with calcium chloride", Geomech. Eng., 18(2), 189-203. https://doi.org/10.12989/gae.2019.18.2.189.
- Wang, Z.Z., Gao, B., Jiang, Y.J. and Yuan, S. (2009), "Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake", Science in China Series E-Technological Sciences, 52(2), 546-558. https://doi.org/10.1007/s11431-009-0054-z.
- Wichtmann, T., Rondon, H.A., Niemunis, A., Triantafyllidis, T. and Lizcano, A. (2010), "Prediction of permanent deformations in pavements using a high-cycle accumulation model", J. Geotech. Geoenviron. Eng., 136, 728-740. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000275.
- Yang, Y.G., Lai, Y.M. and Li, J.B. (2010), "Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure", Cold Reg. Sci. Technol., 60(3), 245-250. https://doi.org/10.1016/j.coldregions.2009.11.003.
- Yao, X.L., Qi, J.L. and Ma, W. (2009), "Influence of freeze-thaw on the stored free energy in soils", Cold Regions Sci. Technology, 56(2-3), 115-119. https://doi.org/10.1016/j.coldregions.2008.11.001.
- Yilmaz, F. and Fidan, D. (2018), "Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite", Geomech. Eng., 14(3), 301-306. https://doi.org/10.12989/gae.2018.14.3.301.
- Zhang, Z.L. and Cui, Z.D. (2018), "Effect of freezing-thawing on dynamic characteristics of the silty clay under K0-consolidated condition", Cold Reg. Sci. Technol., 146, 32-42. https://doi.org/10.1016/j.coldregions.2017.11.009.
- Zheng, L.F., Gao, Y.T., Zhou, Y., Liu, T. and Tian, S.G. (2021), "A practical method for predicting ground surface deformation induced by the artificial ground freezing method", Comput. Geotech., 130. https://doi.org/10.1016/j.compgeo.2020.103925.
- Zhou, J. and Tang, Y.Q. (2015a), "Artificial ground freezing of fully saturated mucky clay: Thawing problem by centrifuge modeling", Cold Reg. Sci. Technol., 117, 1-11.https://doi.org/10.1016/j.coldregions.2015.04.005.
- Zhou, J. and Tang, Y.Q. (2015b), "Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing", Eng. Geol., 190, 98-108. https://doi.org/10.1016/j.enggeo.2015.03.002.
- Zhou, Z.W., Ma, W., Zhang, S.J., Mu, Y.H. and Li, G.Y. (2018), "Effect of freeze-thaw cycles in mechanical behaviors of frozen loess", Cold Reg. Sci. Technol., 146, 9-18. https://doi.org/10.1016/j.coldregions.2017.11.011.