DOI QR코드

DOI QR Code

A study on the efficacy of low viscous nanosized biopolymer on the mechanical and hydraulic properties of organic silt

  • Govindarajan Kannan (Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed to be University) ;
  • Evangelin Ramani Sujatha (Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed to be University)
  • Received : 2022.07.08
  • Accepted : 2023.05.16
  • Published : 2023.08.10

Abstract

Biopolymer stabilization is a sustainable alternative to traditional techniques that cause a lesser negative impact on the environment during production and application. The study aims to minimize the biopolymer dosages by sizing the bio-additives to the nanoscale. This study combines the advantages of bio and nanomaterials in geotechnical engineering applications and attempts to investigate the behaviour of a low viscous biopolymer, nano sodium carboxymethyl cellulose (nCMC), to treat organic soil. Soil is treated with 0.25%, 0.50%, 0.75% and 1.00% of nano-bio additive, and its effect on the plastic behaviour, compaction characteristics, strength, hydraulic conductivity (HC) and compressible nature are investigated. The strength increased by 1.68 times after 90 days of curing at a dosage of 0.5% nCMC through the formation of gel threads connecting the soil particles that stiffened the matrix. The viscosity of 1% nCMC increased exponentially, deterring fluid flow through the voids and reduced the HC by 0.85 times after curing for 90 days. Also, beyond the optimum dosage of 0.50%, the nCMC forms a film around the soil particles that inhibits the inter-particle cohesion causing a reduction in strength. Experimental results show that nCMC can effectively substitute conventional additives to stabilize the soil.

Keywords

Acknowledgement

The authors acknowledge the Vice Chancellor of SASTRA Deemed to be University, Thanjavur, India, for supporting the work with the suitable laboratory facilities.

References

  1. Abbasi, N., Farjad, A. and Sepehri, S. (2018), "The use of nanoclay particles for stabilization of dispersive clayey soils", Geotech. Geol. Eng., 36, 327-335. https://doi.org/10.1007/s10706-017-0330-9.
  2. Abd, T.A., Fattah, M.Y. and Aswad, M.F. (2022), "Strengthening of soft soil using caboxymethyl cellelouse biopolymer", IOP Conf. Ser. Earth Environ. Sci., 961. https://doi.org/10.1088/1755-1315/961/1/012030.
  3. Arab, M.G., Mousa, R.A., Gabr, A.R., Azam, A.M., El-Badawy, S. M. and Hassan, A.F. (2019), "Resilient behavior of sodium alginate-treated cohesive soils for pavement applications", J. Mater. Civ. Eng., 31(1), 04018361. https://doi.org/10.1061/(asce)mt.1943-5533.0002565.
  4. ASTM D2166 / D2166M (2016), Standard test method for unconfined compressive strength of cohesive soil, ASTM International, West Conshohocken, PA.
  5. ASTM D2435 / D2435M (2020), Standard test methods for one dimensional consolidation properties of soils using incremental loading, ASTM International, West Conshohocken, PA.
  6. ASTM D2487 (2017), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA.
  7. ASTM D2974 (2020), Standard test methods for determining the water (moisture) content, ash content, and organic material of peat and other organic soils, ASTM International, West Conshohocken, PA.
  8. ASTM D4318 (2017), Standard test methods for liquid limit, plastic limit, and plasticity index of soils, ASTM International, West Conshohocken, PA.
  9. ASTM D5856 (2015), Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter, ASTM International, West Conshohocken, PA.
  10. ASTM D6913 (2004), Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken, PA.
  11. ASTM D698 (2012), Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA.
  12. ASTM D7928 (2021), Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis, ASTM International, West Conshohocken, PA.
  13. ASTM D854 (2014), Standard test methods for specific gravity of soil solids by water pycnometer, ASTM International, West Conshohocken, PA.
  14. Bagriacik, B. and Mahmutluoglu, B. (2021), "Model experiments on coarse-grained soils treated with xanthan gum biopolymer", Arab. J. Geosci., 14(16). https://doi.org/10.1007/s12517-021-08134-8.
  15. Basha, E.A., Hashim, R., Mahmud, H.B. and Muntohar, A.S. (2005), "Stabilization of residual soil with rice husk ash and cement", Constr. Build. Mater., 19(6), 448-453. https://doi.org/10.1016/j.conbuildmat.2004.08.001.
  16. Berzins, A., Jansons, M., Kalneniece, K., Shvirksts, K., Afanasjeva, K., Kasparinskis, R., Grube, M., Bartkevics, V. and Muter, O. (2019), "Modeling the mobility of glyphosate from two contrasting agricultural soils in laboratory column experiments", J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, 54(7), 539-548. https://doi.org/10.1080/03601234.2019.1619387.
  17. Blaha, U., Sapkota, B., Appel, E., Stanjek, H. and Rosler, W. (2008), "Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies", Atmos. Environ., 42(36), 8359-8370. https://doi.org/10.1016/j.atmosenv.2008.07.051.
  18. Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotech., 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
  19. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  20. Changizi, F. and Haddad, A. (2016), "Effect of nano-SiO2 on the geotechnical properties of cohesive soil", Geotech. Geol. Eng., 34(2), 725-733. https://doi.org/10.1007/s10706-015-9962-9.
  21. Changizi, F. and Haddad, A. (2017), "Improving the geotechnical properties of soft clay with nano-silica particles", Proc. Inst. Civ. Eng. Gr. Improv., 170(2), 62-71. https://doi.org/10.1680/jgrim.15.00026.
  22. Chen, H. (2015), "Lignocellulose biorefinery product engineering", In: Lignocellulose Biorefinery Engineering. https://doi.org/10.1016/b978-0-08-100135-6.00005-3.
  23. Choi, S.G., Chang, I., Lee, M., Lee, J.H., Han, J.T. and Kwon, T. H. (2020), "Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers", Constr. Build. Mater., 246, 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415.
  24. Diaz, G.D., Navaza, J.M. and Quintans-Riveiro, L.C. (2008), "Intrinsic viscosity and flow behaviour of arabic gum aqueous solutions", Int. J. Food Prop., 11(4), 773-780. https://doi.org/10.1080/10942910701596918.
  25. Eo, M.Y., Fan, H., Cho, Y.J., Kim, S.M. and Lee, S.K. (2016), "Cellulose membrane as a biomaterial: From hydrolysis to depolymerization with electron beam", Biomater. Res., 20(1), 1-13. https://doi.org/10.1186/s40824-016-0065-3.
  26. Ergun, R., Guo, J. and Huebner-Keese, B. (2015), "Cellulose", Encycl. Food Heal., 694-702. https://doi.org/10.1016/B978-0-12-384947-2.00127-6.
  27. Estabragh, A.R., Rafatjo, H. and Javadi, A.A. (2014), "Treatment of an expansive soil by mechanical and chemical techniques", Geosynth. Int., 21(3), 233-243. https://doi.org/10.1680/gein.14.00011.
  28. Fatehi, H., Bahmani, M. and Noorzad, A. (2019), "Strengthening of Dune Sand with Sodium Alginate Biopolymer", Proceedings of the Geo-Congress 2019, Philadelphia, Pennsylvania. https://doi.org/10.1061/9780784482117.015.
  29. Firoozi, A.A., Guney Olgun, C., Firoozi, A.A. and Baghini, M.S. (2017), "Fundamentals of soil stabilization", Int. J. Geo-Eng., 8(1). https://doi.org/10.1186/s40703-017-0064-9.
  30. Gamallo, M., Fernandez, L., Feijoo, G. and Moreira, M.T. (2020), "Nano-based technologies for environmental soil remediation", Nanomater. Sustain. Energy Environ. Remediation, 307-331. https://doi.org/10.1016/b978-0-12-819355-6.00010-8.
  31. Garside, M. (2021a), Global cement production 1995-2020. https://www.statista.com/statistics/1087115/global-cementproduction-volume/#statisticContainer.
  32. Garside, M. (2021b), Production of lime worldwide 2010-2020. https://www.statista.com/statistics/1006040/production-of-limeworldwide/
  33. Ghasemzadeh, H. and Modiri, F. (2020), "Application of novel Persian gum hydrocolloid in soil stabilization", Carbohydr. Polym., 246, 116639. https://doi.org/10.1016/j.carbpol.2020.116639.
  34. Hataf, N., Ghadir, P. and Ranjbar, N. (2018), "Investigation of soil stabilization using chitosan biopolymer", J. Clean. Prod., 170, 1493-1500. https://doi.org/10.1016/j.jclepro.2017.09.256.
  35. IS 2720-40 (1977), Methods of test for soils - Determination of free swell index of soils, Bureau of Indian standards, New Delhi, India.
  36. Kannan, G. and Sujatha, E.R. (2021), "A review on the choice of nano-silica as soil stabilizer", Silicon. https://doi.org/10.1007/s12633-021-01455-z.
  37. Kannan, G. and Sujatha, E.R. (2022), "Geotechnical behaviour of nano - silica stabilized organic soil", Geomech. Eng., 28(3), 239-253. https://doi.org/10.12989/gae.2022.28.3.239.
  38. Kannan, G., O'Kelly, B.C. and Sujatha, E.R. (2022), "Geotechnical investigation of low-plasticity organic soil treated with nano-calcium carbonate", J. Rock Mech. Geotech. Eng., 15(2), 500-509. https://doi.org/10.1016/j.jrmge.2022.05.004.
  39. Karthick, S., Muralidharan, S., Lee, H.S., Kwon, S.J. and Saraswathy, V. (2019), "Reliability and long-term evaluation of GO-MnO2 nano material as a newer corrosion monitoring sensor for reinforced concrete structures", Cement. Concrete Comp., 100, 74-84. https://doi.org/10.1016/j.cemconcomp.2019.03.012.
  40. Kogel-Knabner, I. and Amelung, W. (2013), Dynamics, chemistry, and preservation of organic matter in soils, Treatise on Geochemistry, 2 nd Ed., 12. https://doi.org/10.1016/B978-0-08-095975-7.01012-3.
  41. Kumar, S.A. and Sujatha, E.R. (2021), "An appraisal of the hydro-mechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil", Carbohydr. Polym., 265, 118083. https://doi.org/10.1016/j.carbpol.2021.118083.
  42. Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 2-11. https://doi.org/10.1007/s12665-016-5643-0.
  43. Lin, O.H., Kumar, R.N., Rozman, H.D., Azemi, M. and Noor, M. (2005), "Grafting of sodium carboxymethylcellulose (CMC) with glycidyl methacrylate and development of UV curable coatings from CMC-g-GMA induced by cationic photoinitiators", Carbohydr. Polym., 59(1), 57-69. https://doi.org/10.1016/j.carbpol.2004.08.027.
  44. Ma, H. and Ma, Q. (2019), "Experimental studies on the mechanical properties of loess stabilized with sodium carboxymethyl cellulose", Adv. Mater. Sci. Eng., 2019. https://doi.org/10.1155/2019/9375685.
  45. Majeed, Z.H. and Taha, M.R. (2013), "A review of stabilization of soils by using nanomaterials", Aust. J. Basic Appl. Sci., 7(2), 576-581.
  46. Mohammadi, M., Khodaparast, M. and Rajabi, A.M. (2021), "Effect of nano calcium carbonate (nano CaCO3) on the strength and consolidation properties of clayey sand soil", Road Mater. Pavement Des., https://doi.org/10.1080/14680629.2021.1976255.
  47. Nath, B.D., Molla, M.K.A. and Sarkar, G. (2017), "Study on strength behavior of organic soil stabilized with fly Ash", Int. Sch. Res. Not., 2017, 1-6. https://doi.org/10.1155/2017/5786541.
  48. Nezhad, M.G., Tabarsa, A. and Latifi, N. (2021), "Effect of natural and synthetic fibers reinforcement on California bearing ratio and tensile strength of clay", J. Rock Mech. Geotech. Eng., 13(3), 626-642. https://doi.org/10.1016/j.jrmge.2021.01.004.
  49. Nikhil, P.S., Ravichandran, P.T. and Krishnan, K.D. (2020), "Stabilization and characterization of soil using wollastonite powder", Mater. Today Proc., 40, 161-166. https://doi.org/10.1016/j.matpr.2020.05.489.
  50. Ning, S., Jumai, H., Wang, Q., Zhou, B., Su, L., Shan, Y. and Zhang, J. (2019), "Comparison of the effects of polyacrylamide and sodium carboxymethylcellulose application on soil water infiltration in sandy loam soils", Adv. Polym. Technol., 2019, 1-7. https://doi.org/10.1155/2019/6869454.
  51. Norhasri, M.S.M., Hamidah, M.S. and Fadzil, A.M. (2017), "Applications of using nano material in concrete: A review", Constr. Build. Mater., 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.
  52. Nugent, R., Zhang, G., and Gambrell, R. (2010), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transp. Res. Rec., 2101, 34-43. https://doi.org/10.3141/2101-05.
  53. Owji, R., Habibagahi, G., Nikooee, E. and Afzali, S.F. (2021), "Wind erosion control using carboxymethyl cellulose: From sand bombardment performance to microfabric analysis", Aeolian Res., 50, 100696. https://doi.org/10.1016/j.aeolia.2021.100696.
  54. Patel, J., Maji, B., Moorthy, N.S.H.N. and Maiti, S. (2020), "Xanthan gum derivatives: Review of synthesis, properties and diverse applications", RSC Adv., 10(45), 27103-27136. https://doi.org/10.1039/d0ra04366d.
  55. Qin, Y. (2016), "Functional wound dressings", Med. Text. Mater., 89-107. https://doi.org/10.1016/b978-0-08-100618-4.00007-8.
  56. Qiu, B., Li, M., Zhang, X., Chen, Y., Zhou, S., Liang, M. and Zou, H. (2021), "Carboxymethyl cellulose sizing repairs carbon fiber surface defects in epoxy composites", Mater. Chem. Phys., 258, 123677. https://doi.org/10.1016/j.matchemphys.2020.123677.
  57. Ravichandran, R. (2009), "Nanoparticles in drug delivery: Potential green nanobiomedicine applications", Int. J. Green Nanotechnol. Biomed., 1(2). https://doi.org/10.1080/19430850903430427.
  58. Saboori, R., Sabbaghi, S., Kalantariasl, A. and Mowla, D. (2018), "Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core-shell nanocomposite", J. Pet. Explor. Prod. Technol., 8(2), 445-454. https://doi.org/10.1007/s13202-018-0432-9.
  59. Shabani, N., Javadi, A., Jafarizadeh-Malmiri, H., Mirzaie, H. and Sadeghi, J. (2021), "Potential application of iron oxide nanoparticles synthesized by co-precipitation technology as a coagulant for water treatment in settling tanks", Mining, Metall. Explor., 38(1), 269-276. https://doi.org/10.1007/s42461-020-00338-y.
  60. Soundara, B., Kulanthaivel, P., Nithipandian, S. and Soundaryan, V. (2020), "A critical review on soil stabilization using bacteria", IOP Conf. Ser. Mater. Sci. Eng., 955(1). https://doi.org/10.1088/1757-899X/955/1/012065.
  61. Sujatha, E.R. and Saisree, S. (2019), "Geotechnical behaviour of guar gum-treated soil", Soils Found., 59(6), 2155-2166. https://doi.org/10.1016/j.sandf.2019.11.012.
  62. Tabari, M. (2018), "Characterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles", Nanomedicine Res. J., 3(1), 25-30. https://doi.org/10.22034/NMRJ.2018.01.004.
  63. Taha, M.R., Alsharef, J.M.A., Khan, T.A., Aziz, M. and Gaber, M. (2018), "Compressive and tensile strength enhancement of soft soils using nanocarbons", Geomech. Eng., 16(5), 559-567. https://doi.org/10.12989/gae.2018.16.5.559.
  64. Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
  65. Taylor, G.S. and Baldridge, P.E. (1954), "The effect of sodium carboxymethylcellulose on some physical properties of Ohio soils", Soil Sci. Soc. Am. J., 18(4), 382. https://doi.org/10.2136/sssaj1954.03615995001800040008x.
  66. Tinti. A., Tugnoli, V., Bonora, S. and Francioso, O. (2015), "Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: A review", J. Cent. Eur. Agric., 16(1), 1-22. https://doi.org/10.5513/JCEA01/16.1.1535.
  67. Yokoyama, T., Masuda, H., Suzuki, M., Ehara, K., Nogi, K., Fuji, M., Fukui, T., Suzuki, H., Tatami, J., Hayashi, K. and Toda, K. (2018), Basic properties and measuring methods of nanoparticles, In Nanoparticle Technology Handbook.