과제정보
The authors acknowledge the Vice Chancellor of SASTRA Deemed to be University, Thanjavur, India, for supporting the work with the suitable laboratory facilities.
참고문헌
- Abbasi, N., Farjad, A. and Sepehri, S. (2018), "The use of nanoclay particles for stabilization of dispersive clayey soils", Geotech. Geol. Eng., 36, 327-335. https://doi.org/10.1007/s10706-017-0330-9.
- Abd, T.A., Fattah, M.Y. and Aswad, M.F. (2022), "Strengthening of soft soil using caboxymethyl cellelouse biopolymer", IOP Conf. Ser. Earth Environ. Sci., 961. https://doi.org/10.1088/1755-1315/961/1/012030.
- Arab, M.G., Mousa, R.A., Gabr, A.R., Azam, A.M., El-Badawy, S. M. and Hassan, A.F. (2019), "Resilient behavior of sodium alginate-treated cohesive soils for pavement applications", J. Mater. Civ. Eng., 31(1), 04018361. https://doi.org/10.1061/(asce)mt.1943-5533.0002565.
- ASTM D2166 / D2166M (2016), Standard test method for unconfined compressive strength of cohesive soil, ASTM International, West Conshohocken, PA.
- ASTM D2435 / D2435M (2020), Standard test methods for one dimensional consolidation properties of soils using incremental loading, ASTM International, West Conshohocken, PA.
- ASTM D2487 (2017), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA.
- ASTM D2974 (2020), Standard test methods for determining the water (moisture) content, ash content, and organic material of peat and other organic soils, ASTM International, West Conshohocken, PA.
- ASTM D4318 (2017), Standard test methods for liquid limit, plastic limit, and plasticity index of soils, ASTM International, West Conshohocken, PA.
- ASTM D5856 (2015), Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter, ASTM International, West Conshohocken, PA.
- ASTM D6913 (2004), Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken, PA.
- ASTM D698 (2012), Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA.
- ASTM D7928 (2021), Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis, ASTM International, West Conshohocken, PA.
- ASTM D854 (2014), Standard test methods for specific gravity of soil solids by water pycnometer, ASTM International, West Conshohocken, PA.
- Bagriacik, B. and Mahmutluoglu, B. (2021), "Model experiments on coarse-grained soils treated with xanthan gum biopolymer", Arab. J. Geosci., 14(16). https://doi.org/10.1007/s12517-021-08134-8.
- Basha, E.A., Hashim, R., Mahmud, H.B. and Muntohar, A.S. (2005), "Stabilization of residual soil with rice husk ash and cement", Constr. Build. Mater., 19(6), 448-453. https://doi.org/10.1016/j.conbuildmat.2004.08.001.
- Berzins, A., Jansons, M., Kalneniece, K., Shvirksts, K., Afanasjeva, K., Kasparinskis, R., Grube, M., Bartkevics, V. and Muter, O. (2019), "Modeling the mobility of glyphosate from two contrasting agricultural soils in laboratory column experiments", J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, 54(7), 539-548. https://doi.org/10.1080/03601234.2019.1619387.
- Blaha, U., Sapkota, B., Appel, E., Stanjek, H. and Rosler, W. (2008), "Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies", Atmos. Environ., 42(36), 8359-8370. https://doi.org/10.1016/j.atmosenv.2008.07.051.
- Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotech., 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
- Changizi, F. and Haddad, A. (2016), "Effect of nano-SiO2 on the geotechnical properties of cohesive soil", Geotech. Geol. Eng., 34(2), 725-733. https://doi.org/10.1007/s10706-015-9962-9.
- Changizi, F. and Haddad, A. (2017), "Improving the geotechnical properties of soft clay with nano-silica particles", Proc. Inst. Civ. Eng. Gr. Improv., 170(2), 62-71. https://doi.org/10.1680/jgrim.15.00026.
- Chen, H. (2015), "Lignocellulose biorefinery product engineering", In: Lignocellulose Biorefinery Engineering. https://doi.org/10.1016/b978-0-08-100135-6.00005-3.
- Choi, S.G., Chang, I., Lee, M., Lee, J.H., Han, J.T. and Kwon, T. H. (2020), "Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers", Constr. Build. Mater., 246, 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415.
- Diaz, G.D., Navaza, J.M. and Quintans-Riveiro, L.C. (2008), "Intrinsic viscosity and flow behaviour of arabic gum aqueous solutions", Int. J. Food Prop., 11(4), 773-780. https://doi.org/10.1080/10942910701596918.
- Eo, M.Y., Fan, H., Cho, Y.J., Kim, S.M. and Lee, S.K. (2016), "Cellulose membrane as a biomaterial: From hydrolysis to depolymerization with electron beam", Biomater. Res., 20(1), 1-13. https://doi.org/10.1186/s40824-016-0065-3.
- Ergun, R., Guo, J. and Huebner-Keese, B. (2015), "Cellulose", Encycl. Food Heal., 694-702. https://doi.org/10.1016/B978-0-12-384947-2.00127-6.
- Estabragh, A.R., Rafatjo, H. and Javadi, A.A. (2014), "Treatment of an expansive soil by mechanical and chemical techniques", Geosynth. Int., 21(3), 233-243. https://doi.org/10.1680/gein.14.00011.
- Fatehi, H., Bahmani, M. and Noorzad, A. (2019), "Strengthening of Dune Sand with Sodium Alginate Biopolymer", Proceedings of the Geo-Congress 2019, Philadelphia, Pennsylvania. https://doi.org/10.1061/9780784482117.015.
- Firoozi, A.A., Guney Olgun, C., Firoozi, A.A. and Baghini, M.S. (2017), "Fundamentals of soil stabilization", Int. J. Geo-Eng., 8(1). https://doi.org/10.1186/s40703-017-0064-9.
- Gamallo, M., Fernandez, L., Feijoo, G. and Moreira, M.T. (2020), "Nano-based technologies for environmental soil remediation", Nanomater. Sustain. Energy Environ. Remediation, 307-331. https://doi.org/10.1016/b978-0-12-819355-6.00010-8.
- Garside, M. (2021a), Global cement production 1995-2020. https://www.statista.com/statistics/1087115/global-cementproduction-volume/#statisticContainer.
- Garside, M. (2021b), Production of lime worldwide 2010-2020. https://www.statista.com/statistics/1006040/production-of-limeworldwide/
- Ghasemzadeh, H. and Modiri, F. (2020), "Application of novel Persian gum hydrocolloid in soil stabilization", Carbohydr. Polym., 246, 116639. https://doi.org/10.1016/j.carbpol.2020.116639.
- Hataf, N., Ghadir, P. and Ranjbar, N. (2018), "Investigation of soil stabilization using chitosan biopolymer", J. Clean. Prod., 170, 1493-1500. https://doi.org/10.1016/j.jclepro.2017.09.256.
- IS 2720-40 (1977), Methods of test for soils - Determination of free swell index of soils, Bureau of Indian standards, New Delhi, India.
- Kannan, G. and Sujatha, E.R. (2021), "A review on the choice of nano-silica as soil stabilizer", Silicon. https://doi.org/10.1007/s12633-021-01455-z.
- Kannan, G. and Sujatha, E.R. (2022), "Geotechnical behaviour of nano - silica stabilized organic soil", Geomech. Eng., 28(3), 239-253. https://doi.org/10.12989/gae.2022.28.3.239.
- Kannan, G., O'Kelly, B.C. and Sujatha, E.R. (2022), "Geotechnical investigation of low-plasticity organic soil treated with nano-calcium carbonate", J. Rock Mech. Geotech. Eng., 15(2), 500-509. https://doi.org/10.1016/j.jrmge.2022.05.004.
- Karthick, S., Muralidharan, S., Lee, H.S., Kwon, S.J. and Saraswathy, V. (2019), "Reliability and long-term evaluation of GO-MnO2 nano material as a newer corrosion monitoring sensor for reinforced concrete structures", Cement. Concrete Comp., 100, 74-84. https://doi.org/10.1016/j.cemconcomp.2019.03.012.
- Kogel-Knabner, I. and Amelung, W. (2013), Dynamics, chemistry, and preservation of organic matter in soils, Treatise on Geochemistry, 2 nd Ed., 12. https://doi.org/10.1016/B978-0-08-095975-7.01012-3.
- Kumar, S.A. and Sujatha, E.R. (2021), "An appraisal of the hydro-mechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil", Carbohydr. Polym., 265, 118083. https://doi.org/10.1016/j.carbpol.2021.118083.
- Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M.Z.A. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 2-11. https://doi.org/10.1007/s12665-016-5643-0.
- Lin, O.H., Kumar, R.N., Rozman, H.D., Azemi, M. and Noor, M. (2005), "Grafting of sodium carboxymethylcellulose (CMC) with glycidyl methacrylate and development of UV curable coatings from CMC-g-GMA induced by cationic photoinitiators", Carbohydr. Polym., 59(1), 57-69. https://doi.org/10.1016/j.carbpol.2004.08.027.
- Ma, H. and Ma, Q. (2019), "Experimental studies on the mechanical properties of loess stabilized with sodium carboxymethyl cellulose", Adv. Mater. Sci. Eng., 2019. https://doi.org/10.1155/2019/9375685.
- Majeed, Z.H. and Taha, M.R. (2013), "A review of stabilization of soils by using nanomaterials", Aust. J. Basic Appl. Sci., 7(2), 576-581.
- Mohammadi, M., Khodaparast, M. and Rajabi, A.M. (2021), "Effect of nano calcium carbonate (nano CaCO3) on the strength and consolidation properties of clayey sand soil", Road Mater. Pavement Des., https://doi.org/10.1080/14680629.2021.1976255.
- Nath, B.D., Molla, M.K.A. and Sarkar, G. (2017), "Study on strength behavior of organic soil stabilized with fly Ash", Int. Sch. Res. Not., 2017, 1-6. https://doi.org/10.1155/2017/5786541.
- Nezhad, M.G., Tabarsa, A. and Latifi, N. (2021), "Effect of natural and synthetic fibers reinforcement on California bearing ratio and tensile strength of clay", J. Rock Mech. Geotech. Eng., 13(3), 626-642. https://doi.org/10.1016/j.jrmge.2021.01.004.
- Nikhil, P.S., Ravichandran, P.T. and Krishnan, K.D. (2020), "Stabilization and characterization of soil using wollastonite powder", Mater. Today Proc., 40, 161-166. https://doi.org/10.1016/j.matpr.2020.05.489.
- Ning, S., Jumai, H., Wang, Q., Zhou, B., Su, L., Shan, Y. and Zhang, J. (2019), "Comparison of the effects of polyacrylamide and sodium carboxymethylcellulose application on soil water infiltration in sandy loam soils", Adv. Polym. Technol., 2019, 1-7. https://doi.org/10.1155/2019/6869454.
- Norhasri, M.S.M., Hamidah, M.S. and Fadzil, A.M. (2017), "Applications of using nano material in concrete: A review", Constr. Build. Mater., 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.
- Nugent, R., Zhang, G., and Gambrell, R. (2010), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transp. Res. Rec., 2101, 34-43. https://doi.org/10.3141/2101-05.
- Owji, R., Habibagahi, G., Nikooee, E. and Afzali, S.F. (2021), "Wind erosion control using carboxymethyl cellulose: From sand bombardment performance to microfabric analysis", Aeolian Res., 50, 100696. https://doi.org/10.1016/j.aeolia.2021.100696.
- Patel, J., Maji, B., Moorthy, N.S.H.N. and Maiti, S. (2020), "Xanthan gum derivatives: Review of synthesis, properties and diverse applications", RSC Adv., 10(45), 27103-27136. https://doi.org/10.1039/d0ra04366d.
- Qin, Y. (2016), "Functional wound dressings", Med. Text. Mater., 89-107. https://doi.org/10.1016/b978-0-08-100618-4.00007-8.
- Qiu, B., Li, M., Zhang, X., Chen, Y., Zhou, S., Liang, M. and Zou, H. (2021), "Carboxymethyl cellulose sizing repairs carbon fiber surface defects in epoxy composites", Mater. Chem. Phys., 258, 123677. https://doi.org/10.1016/j.matchemphys.2020.123677.
- Ravichandran, R. (2009), "Nanoparticles in drug delivery: Potential green nanobiomedicine applications", Int. J. Green Nanotechnol. Biomed., 1(2). https://doi.org/10.1080/19430850903430427.
- Saboori, R., Sabbaghi, S., Kalantariasl, A. and Mowla, D. (2018), "Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core-shell nanocomposite", J. Pet. Explor. Prod. Technol., 8(2), 445-454. https://doi.org/10.1007/s13202-018-0432-9.
- Shabani, N., Javadi, A., Jafarizadeh-Malmiri, H., Mirzaie, H. and Sadeghi, J. (2021), "Potential application of iron oxide nanoparticles synthesized by co-precipitation technology as a coagulant for water treatment in settling tanks", Mining, Metall. Explor., 38(1), 269-276. https://doi.org/10.1007/s42461-020-00338-y.
- Soundara, B., Kulanthaivel, P., Nithipandian, S. and Soundaryan, V. (2020), "A critical review on soil stabilization using bacteria", IOP Conf. Ser. Mater. Sci. Eng., 955(1). https://doi.org/10.1088/1757-899X/955/1/012065.
- Sujatha, E.R. and Saisree, S. (2019), "Geotechnical behaviour of guar gum-treated soil", Soils Found., 59(6), 2155-2166. https://doi.org/10.1016/j.sandf.2019.11.012.
- Tabari, M. (2018), "Characterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles", Nanomedicine Res. J., 3(1), 25-30. https://doi.org/10.22034/NMRJ.2018.01.004.
- Taha, M.R., Alsharef, J.M.A., Khan, T.A., Aziz, M. and Gaber, M. (2018), "Compressive and tensile strength enhancement of soft soils using nanocarbons", Geomech. Eng., 16(5), 559-567. https://doi.org/10.12989/gae.2018.16.5.559.
- Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
- Taylor, G.S. and Baldridge, P.E. (1954), "The effect of sodium carboxymethylcellulose on some physical properties of Ohio soils", Soil Sci. Soc. Am. J., 18(4), 382. https://doi.org/10.2136/sssaj1954.03615995001800040008x.
- Tinti. A., Tugnoli, V., Bonora, S. and Francioso, O. (2015), "Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: A review", J. Cent. Eur. Agric., 16(1), 1-22. https://doi.org/10.5513/JCEA01/16.1.1535.
- Yokoyama, T., Masuda, H., Suzuki, M., Ehara, K., Nogi, K., Fuji, M., Fukui, T., Suzuki, H., Tatami, J., Hayashi, K. and Toda, K. (2018), Basic properties and measuring methods of nanoparticles, In Nanoparticle Technology Handbook.