DOI QR코드

DOI QR Code

Study of Growth and Anthocyanin Accumulation by Ozone Stress in Rice

벼 오존가스 노출에 따른 초기 생육 및 안토시아닌 생합성 변화 분석 연구

  • HyeonSeok Lee (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • WoonHa Hwang (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • SeoYeong Yang (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Yeongseo Song (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • WooJin Im (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • HoeJeong Jeong (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • ChungGen Lee (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Juhee Kim (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • MyoungGoo Choi (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion)
  • 이현석 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 황운하 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 양서영 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 송영서 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 임우진 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 정회정 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이충근 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김주희 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 최명구 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Received : 2022.11.02
  • Accepted : 2023.06.22
  • Published : 2023.06.30

Abstract

Recently, the concentration of fine dust causative substances (NOx, VOC, etc.) in the atmosphere has increased, resulting in high concentrations of tropospheric ozone (O3) and increased damage to crops. This study aimed to analyze the impact of high concentrations of ozone gas on the initial growth of rice plants and investigate the relationship between ozone damage resistance and anthocyanin biosynthesis. To achieve this, rice plants were exposed to elevated levels of ozone g as using an ozone chamber, and subsequent measurements were taken to assess changes in growth, the percentage of damaged leaves, and the anthocyanin content. The results revealed that varieties with a higher proportion of damaged leaves exhibited a relative increase in anthocyanin biosynthesis following ozone exposure. Notably, detrimental effects on growth, such as decreased biomass, were mitigated. Additionally, Anthocyanin biosynthesis genes in rice were listed by selecting homologous genes from Arabidopsis and Maize. The expression of OsF3H2, OsFLS1 and OsLDOX3 was induced during ozone treatment. This result is expected to contribute to the study of the protection mechanism of plants from ozone damage.

최근 지표 오존의 증가로 농작물 피해 우려가 확대되고 있다. 본 시험에서는 오존처리 후 안토시아닌 생합성이 증가하는 품종은 오존 저항성이 높을 것이라 예상했으나 오히려 잎의 갈색반점 피해율이 증대된 것으로 나타났다. 오존에 따른 잎에서의 피해율이 벼의 수량 감소와 무조건적으로 상관성을 보이는 것은 아니기 때문에(Sawada & Kohno, 2009), 안토시아닌 등과 같은 스트레스 반응 물질과 잎에서의 피해 정도, 생육반응 등의 상관성을 확인하는 추가적인 연구가 필요할 것으로 생각된다. 오존으로 인한 잎의 피해는 나타나기까지 수일이 걸리지만 안토시아닌의 경우 처리 후 1일이면 확인할 수 있어 조기 검정 방법으로 개발이 가능할 것으로 보인다. 또한 오존에 의하여 특이적으로 발현이 상승한 OsF3H 유전자는 오존 저항성 마커로 활용이 가능할 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 아젠다 사업(과제번호: PJ01501301)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Chung, M., K. Kim, and B. Kang, 2000: Change of SOD, POD Activity and Stomata Resistance for Ozone on Rice (Oryza sativa L.). Korea Journal of Environmental Agriculture 19, 160-165.
  2. Chung, M., K. Kim, D. Song, and B. Kang, 1999: Physiological Responses of Rice (Oryza sativa L.) Varieties to Ozone. Korea Journal of Environmental Agriculture 18, 11-17.
  3. Holton, T. A, and E. C. Cornish, 1995: Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071-1083. https://doi.org/10.1105/tpc.7.7.1071
  4. Jing, L., V. Dombinov, S. Shen, Y. Wu, L. Yang, Y. Wang, and M. Frei, 2016: Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone. Environ Pollut 210, 397-408. https://doi.org/10.1016/j.envpol.2016.01.023
  5. Kim, J., T. Son, J. Cho, and S. Lee, 2002: Effects of Abscisic acid on Ozone Injury in Rice. Korean Journal of Crop Science 47(3), 174-185.
  6. Kittipornkul, P., C. Treesubsuntorn, and P. Thiravetyan, 2020: Effect of exogenous catechin and salicylic acid on rice productivity under ozone stress: the role of chlorophyll contents, lipid peroxidation, and antioxidant enzymes. Environ Sci Pollut Res Int 27(20), 25774-25784. https://doi.org/10.1007/s11356-020-08962-3
  7. Lee, S., E. Son, S. Hong, S. Oh, J. Lee, J. Park, S. Woo, and C. Lee, 2016: Growth and yield under low solar radiation during the reproductive growth stages of rice plats. Korean Journal of Crop Science 61(2), 87-91. https://doi.org/10.7740/kjcs.2016.61.2.087
  8. Liu, M., X. Li, Y. Liu, and B. Cao, 2013: Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiology and Biochemistry 73, 161-167. https://doi.org/10.1016/j.plaphy.2013.09.016
  9. Mulchi, C. L., E. Lee, K. Tuthill, and E. V. Olinick, 1988: Influence of ozone stress on growth processes, yields and grain quality characteristics among soybean cultivars. Environmental Pollution 53(1-4), 151-169. https://doi.org/10.1016/0269-7491(88)90031-0
  10. Ramya, A., P. Dhevagi, S. S. Rakesh, M. Maheswari, S. Karthikeyan, R. Saraswathi, C. N. Chandrasekhar, and S. Venkataramanie, 2021: Detection of ozone stress in rice cultivars using spectral reflectance. Environmental Advances 6, 100129.
  11. Sawada, H, Y. kohno, 2009: Diffrential ozone sensitivity of rice cultivars as indicated by visible injury and grain yield. Plant Biology 11, 70-75. https://doi.org/10.1111/j.1438-8677.2009.00233.x
  12. Schoenbohm, C., S. Martens, C. Eder, G. Forkmann, and B. Weisshaar, 2000: Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the Encoded P450 enzyme. Biol. Chem 381, 749-753. https://doi.org/10.1515/BC.2000.095
  13. Shao, Z., Y. Zhao, Y. Zhang, Y. Wang, Y. Wang, and L. Yang, 2021: Effect of ozone stress on yield characteristics of indica-japonica hybrid rice Yongyou 538 in two consecutive growing seasons. Environmental and Experimental Botany 186, 104447.
  14. Shirley, B.W., W. L. Kubasek, G. Storz, E. Bruggemann, M. Koornneef, F. M. Ausubel, and H. M. Goodman, 1995: Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. The Plant Journal 8, 659-671. https://doi.org/10.1046/j.1365-313X.1995.08050659.x
  15. Tsukahara, K., H. Sawada, Y. Kohno, T. Matsuura, I. C. Mori, T. Terao, I. Masanori and M. Tamaoki, 2015: Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene. PLoS One 10(4), e0123308.
  16. Xu, Z., K. Mahmood, and S. J. Rothstein, 2017: ROS Induces Anthocyanin Production Via Late Biosynthetic Genes and Anthocyanin Deficiency Confers the Hypersensitivity to ROS-Generating Stresses in Arabidopsis. Plant Cell Physiology 58(8), 1364-1377. https://doi.org/10.1093/pcp/pcx073
  17. Xu, Z., H. Yang, M. Schaufelberger, X. Li, Q. Cao, H. Xiao, and R. Zhen, 2020: Role of Flavonol Synthesized by Nucleus FLS1 in Arabidopsis Resistance to Pb Stress. Journal of Agricultural Food Chemistry 68, 9646-9653. https://doi.org/10.1021/acs.jafc.0c02848