DOI QR코드

DOI QR Code

삼나무, 편백, 종가시나무 임분의 토양호흡에 관한 연구

Soil Respiration Rates in Cryptomeria japonica D. Don, Chamaecyparis obtusa Endl., and Quercus glauca Thunb. Stands

  • 백경린 (경상국립대학교 환경산림과학부) ;
  • 백경원 (경상국립대학교 환경산림과학부) ;
  • 최병길 (경상국립대학교 환경산림과학부) ;
  • 김호진 (경상국립대학교 환경산림과학부) ;
  • 이지현 (경상국립대학교 환경산림과학부) ;
  • 김춘식 (경상국립대학교 환경산림과학부)
  • Gyeongrin Baek (Division of Environmental and Forest Science, Gyeongsang National University) ;
  • Gyeongwon Baek (Division of Environmental and Forest Science, Gyeongsang National University) ;
  • Byeonggil Choi (Division of Environmental and Forest Science, Gyeongsang National University) ;
  • Hojin Kim (Division of Environmental and Forest Science, Gyeongsang National University) ;
  • Jihyun Lee (Division of Environmental and Forest Science, Gyeongsang National University) ;
  • Choonsig Kim (Division of Environmental and Forest Science, Gyeongsang National University)
  • 투고 : 2022.12.17
  • 심사 : 2023.05.01
  • 발행 : 2023.06.30

초록

본 연구는 동일한 임분연령과 유사한 입지환경에서 생육한 삼나무, 편백, 종가시나무 임분을 대상으로 2020년 5월부터 2022년 4월까지 2년 동안 토양호흡을 측정하고 토양 환경요인과의 관계를 조사하였다. 토양호흡은 세 임분 모두 뚜렷한 월별 변동을 보였으며 종가시나무 임분의 변동이 삼나무나 편백 임분에 비해 크게 나타났다. 조사기간 동안 평균 토양호흡은 종가시나무 임분이 2.63µmol m-2 s-1로, 편백 0.99µmol m-2 s-1, 삼나무 0.93µmol m-2 s-1에 비해 유의적으로 토양 CO2 방출(P < 0.05)이 크게 나타났다. 한편, 토양 pH는 종가시나무가 pH 4.87로 삼나무 pH 5.30, 편백 pH 5.14에 비해 낮은 값을 보였으나, 토양수분 함량, 토양온도, 토양 전기전도도, 토양 유기탄소 함량 등은 임분 간 유의한 차가 없었다. 조사한 임분 모두 토양온도와 토양호흡 사이에 유의적인 지수함수모델 관계가 있었으며(R2 = 0.44~0.80), Q10 값은 삼나무 2.58, 편백 3.10, 종가시나무 5.13으로 종가시나무 임분이 가장 크게 나타났다. 본 연구 결과에 따르면 종가시나무 임분은 삼나무와 편백 임분에 비해 토양호흡이 많고 토양온도 상승에 가장 크게 반응할 것으로 나타났다.

The quantification of soil respiration rates is important to understand carbon cycles of forest ecosystems. Soil respiration rates were assessed using Li-8100A soil flux system in one evergreen broadleaved (Quercus glauca Thunb.) and two coniferous (Cryptomeria japonica D. Don and Chamaecyparis obtusa Endl.) stands from May 2020 to April 2022 in southern Korea. Monthly variations of soil respiration rates were higher in the Q. glauca stand than in the C. japonica and the C. obtusa stands. The mean soil respiration rates were significantly higher in the Q. glauca stand (2.63µmol m-2 s-1) than in the C. japonica (0.93µmol m-2 s-1) and C. obtusa (0.99µmol m-2 s-1) stands. The three stands showed exponential relationships between soil respiration rates and soil temperature (R2 = 0.44-0.80). The sensitivity of temperature (Q10 values) to soil respiration rates was highest in the Q. glauca stand (5.13), followed by the C. obtusa (3.10) and C. japonica (2.58) stands. These results indicate that soil respiration rates can be increased more in evergreen broadleaved stands than in coniferous stands under enhanced soil temperature.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1005791).

참고문헌

  1. Baek, G., C. G. Jo, and C. Kim, 2016: Seasonal variations of soil CO2 efflux rates and soil environmental factors in Pinus densiflora and Quercus variabilis stands. Korean Journal of Agricultural and Forest Meteorology 18(3), 120-126. https://doi.org/10.5532/KJAFM.2016.18.3.120
  2. Baek, G., and C. Kim, 2020: Soil CO2 efflux dynamics in response to fertilization in Pinus densiflora and Quercus variabilis stands. Journal of Korean Society of Forest Science 109(3), 271-280. https://doi.org/10.14578/JKFS.2020.109.3.271
  3. Barba, J., A. Cueva, M. Bahn, G. A. Barron-Gafford, B. Bond-Lamberty, P. J. Hanson, A. Jaimes, L. Kulmala, J. Pupmpanen, R. L. Scott, G. Wohlfahrt, and R. Vargas, 2018: Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements. Agricultural and Forest Meteorology 249, 434-443. https://doi.org/10.1016/j.agrformet.2017.10.028
  4. Bond-Lamberty, B., 2018: New techniques and data for understanding the global soil respiration flux. Earth's Future 6(9), 1176-1180. https://doi.org/10.1029/2018EF000866
  5. Deng, Q., G. Zhou, J. Liu, S. Liu, H. Duan, and D. Zhang, 2010: Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences 7(1), 315-328. https://doi.org/10.5194/bg-7-315-2010
  6. Giasson, M. A., A. M. Ellison, R. D. Bowden, P. M. Crill, E. A. Davidson, J. E. Drake, S. D. Frey, J. L. Hadley, M. Lavine, J. M. Melillo, J. W. Munger, K. J. Nadelhoffer, L. Nicoll, S. V. Ollinger, K. E. Savage, P. A. Steudler, J. Tang, R. K. Varner, S. C. Wofsy, D. R. Foster, and A. C. Finzi, 2013: Soil respiration in a northeastern US temperate forest: a 22-year synthesis. Ecosphere 4(11), 1-28. https://doi.org/10.1890/ES13.00183.1
  7. Han, G., G. Zhou, Z. Xu, Y. Yang, J. Liu, and K. Shi, 2007: Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry 39(2), 418-425. https://doi.org/10.1016/j.soilbio.2006.08.009
  8. Huang, Y. H., Y. Hung, I. R. Lin, T. Kume, O. V. Menyailo, and C. H. Cheng, 2017: Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall. Botanical Studies 58, 49.
  9. IPCC, 2018: Summary for Policymakers. In: Global warming of 1.5℃. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3-24.
  10. Jeong, H. M., R. H. Jang, H. R. Kim, and Y. H. You, 2017: Soil CO2 efflux in a warm-temperature and sub-alpine forest in Jeju, South Korea. Journal of Ecology and Environment 41, 23.
  11. Jeong, J. H., K. S. Goo, C. H. Lee, H. G. Won, J. O. Byun, and C. Kim, 2003: Physico-chemical properties of Korean forest soils by parent rocks. Journal of Korean Forest Society 92(3), 254-262.
  12. Kalra, Y. P., and D. G. Maynard, 1991: Methods Manual for Forest Soil and Plant Analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-319E, 116pp.
  13. Katayama, A., T. Enoki, T. Kume, and K. Otsuki, 2018: Characteristics of soil respiration in upper and lower slope positions with different aboveground biomass: a case study in a Japanese cypress forest. Journal of Agricultural Meteorology 74(2), 63-70. https://doi.org/10.2480/agrmet.D-17-00019
  14. Kim, C., and J. Jeong, 2016: Comparison of soil CO2 efflux rates in Larix leptolepis, Pinus densiflora and P. rigitaeda plantations in Southern Korea. Dendrobiology 76, 51-60. https://doi.org/10.12657/denbio.076.005
  15. Kim, C., S. Kim, G. Baek, and A. R. Yang, 2019: Carbon and nitrogen responses in litterfall and litter decomposition in red pine (Pinus densiflora S. et Z.) stands disturbed by pine wilt disease. Forests 10(3), 244.
  16. Li, W., Z. Bai, C. Jin, X. Zhang, D. Guan, A. Wang, F. Yuan, and J. Wu, 2017: The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest. Science of the Total Environment 590-591, 242-248. https://doi.org/10.1016/j.scitotenv.2017.02.229
  17. Metcalfe, D. B., P. Meir, L. E. O. C. Aragao, Y. Malhi, A. C. L. da Costa, A. Braga, P. H. L. Goncalves, J. de Athaydes, S. S. de Almeida, and M. Williams, 2007: Factors controlling spatiotemporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. Journal of Geophysical Research 112, G04001.
  18. Mitani, T., Y. Kosugi, K. Osaka, S. Ohkubo, S. Takanashi, and M. Tani, 2006: Spatial and temporal variability of soil respiration rate at a small watershed revegetated with Japanese cypress [Chamaecyparis obtusa]. Journal of the Japanese Forest Society 88(6), 496-507. https://doi.org/10.4005/jjfs.88.496
  19. Ohashi, M., K. Gyokusen, and A. Saito, 1999: Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an open-flow chamber method. Forest Ecology and Management 123(2-3), 105-114. https://doi.org/10.1016/S0378-1127(99)00020-1
  20. Saiz, G., K. A. Byrne, K. Butterbach-Bahl, R. Kiese, V. Blujdea, and E. P. Farrell, 2006: Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology 12(6), 1007-1020. https://doi.org/10.1111/j.1365-2486.2006.01145.x
  21. SAS Institute Inc, 2003: SAS/STAT Statistical Software. Version 9.1. SAS publishing, Cary, NC. USA.
  22. Vesterdal, L., B. Elberling, J. R. Christiansen, I. Callesen, and I. K. Schmidt, 2012: Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management 264, 185-196. https://doi.org/10.1016/j.foreco.2011.10.009
  23. Zheng, Z. M., G. R. Yu, X. M. Sun, S. G. Li, Y. S. Wang, Y. H. Wang, Y. L. Fu, and Q. F. Wang, 2010: Spatio-temporal variability of soil respiration of forest ecosystems in China: Influencing factors and evaluation model. Environmental Management 46(4), 633-642. https://doi.org/10.1007/s00267-010-9509-z