수자원분야 인공지능 활용 연구 동향 및 소고

  • 신주영 (국민대학교 건설시스템공학부)
  • Published : 2023.06.30

Abstract

Keywords

References

  1. Bauer, P. et al., 2021, The digital revolution of Earth-system science. Nat. Comput. Sci. 1, 104-113. https://doi.org/10.1038/s43588-021-00023-0
  2. Castangia et al., 2023, Transformer neural networks for interpretable flood forecasting, Environmental Modelling & Software, 160, 105581.
  3. Espeholt, L. et al., 2022, Deep learning for twelve hour precipitation forecasts. Nat. Commun. 13, 5145.
  4. Feng, D., Tan, Z., and He, Q.Z., 2023, Physics-informed neural networks of the Saint-Venant equations for downscaling a large-scale river model. Water Resources Research, 59.
  5. Hess et al., 2022, Physically constrained generative adversarial networks for improving precipitation fields from Earth system models. Nat. Mach. Intell. 4, 828-839. https://doi.org/10.1038/s42256-022-00540-1
  6. Hosseiny, H., Nazari, F., Smith, V., and Nataraj, C., 2020, A framework for modeling flood depth using a hybrid of hydraulics and machine learning. Sci. Rep. 10, 8222.
  7. Irrgang, C. et al., 2021, Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nat. Mach. Intell. 3, 667-674. https://doi.org/10.1038/s42256-021-00374-3
  8. Kadow, C., Hall, D. M. and Ulbrich, U., 2020, Artificial intelligence reconstructs missing climate information. Nat. Geosci. 13, 408-413. https://doi.org/10.1038/s41561-020-0582-5
  9. Koppa, A., Rains, D., Hulsman, P., Poyatos, R., and Miralles, D. G. 2022, A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912.
  10. Larson, A., 2022, A clearer view of Earth's water cycle via neural networks and satellite data. Nat. Rev. Earth Environ. 3, 361.
  11. Nearing et al., 2020. A deep learning architecture for conservative dynamical systems: Application to rainfall-runoff modeling. In AI for Earth Sciences Workshop at NEURIPS.
  12. Pekel, J.-F, Cottam, A., Gorelick, N. & Belward, A. S. High resolution mapping of global surface water and its long-term changes. Nature 540, 418-422 (2016). https://doi.org/10.1038/nature20584
  13. Richards, C.E., Tzachor, A., Avin, S., and Fenner, R., 2023. Rewards, risks and responsible deployment of artificial intelligence in water systems. Nature Water, 1, 422-432.
  14. Sharafati, A., Asadollah, S. B. H. S., and Neshat, A., 2020, A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. J. Hydrol. 591, 125468.
  15. Sit et al., 2020, A comprehensive review of deep learning applications in hydrology and water resources, Water Science and Technology, 82 (12): 2635-2670. https://doi.org/10.2166/wst.2020.369
  16. Vaswani et al., 2017, Attention is all you need. Advances in neural information processing systems.
  17. Xu et al., 2023, Transformer Based Water Level Prediction in Poyang Lake, China. Water, 15, 576.
  18. Zaniolo, M., Giuliani, M., Sinclair, S., Burlando, P., and Castelletti, A., 2021, When timing matters-misdesigned dam filling impacts hydropower sustainability. Nat. Commun. 12, 3056.
  19. Zarei, M. et al., 2021, Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages. Sci. Rep. 11, 24295.
  20. Zeng, A., Chen, M., Zhang, L., and Xu, Q. 2023, Are Transformers Effective for Time Series Forecasting?, Proceedings of the AAAI Conference on Artificial Intelligence