DOI QR코드

DOI QR Code

Report of seven unrecorded bacterial species in Korea belonging to the family Acetobacteraceae

  • Jun Heo (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyorim Choi (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Seunghwan Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yiseul Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Daseul Lee (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Byeong-Hak Han (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Seung-Beom Hong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Soon-Wo Kwon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2022.09.14
  • Accepted : 2023.07.06
  • Published : 2023.08.04

Abstract

Several genera belonging to the family Acetobacteraceae were generally considered to be acetic acid bacteria (AAB) which produce acetic acid from alcohols using an oxidation pathway. Some species of the family Acetobacteraceae have been of interest to the industry due to their capability to produce vinegar. In 2018-2020, several bacterial strains were isolated from plants, fruits and vinegar in various regions of the Republic of Korea. Based on the 16S rRNA gene sequences, seven species classified into the family Acetobacteraceae were found to be ones unrecorded in the Republic of Korea, including two Asaia species, one Gluconacetobacter species, three Gluconobacter species and one Komagataeibacter species. As a result, we report Asaia lannensis AF11C3 (=KACC 22050) isolated from plant Chrysanthemum zawadskii, Asaia platycodi AF15C2 (=KACC 22051) isolated from plant Isodon inflexus, Gluconacetobacter liquefaciens C23-3 (=KACC 22064) isolated from fruit of Pyrus pyrifolia, Gluconobacter cerinus BGF2-R2 (=KACC 22053) isolated from fruit of Prunus armeniaca, Gluconobacter kondonii FR39A4 (=KACC 22388) isolated from persimmon fruit, Gluconobacter thailandicus FR36C4 (=KACC 22057) isolated from fruit of Pseudocydonia sinensis and Komagataeibacter melaceti SPV-2 (=KACC 22058) isolated from potato vinegar.

Keywords

Acknowledgement

This study was carried out with the support(PJ016776) of National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

References

  1. Boldareva, E.N., T.P. Turova, T.V. Kolganova, A.A. Moskalenko, Z.K. Makhneva and V.M. Gorlenko. 2009. Roseococcus suduntuyensis sp. nov., a new aerobic bacteriochlorophyll a-containing bacterium isolated from a low-mineralized soda lake of Eastern Siberia. Microbiology 78:92-101. https://doi.org/10.1134/S0026261709010123
  2. Crotti, E., A. Rizzi, B. Chouaia, I. Ricci, G. Favia, A. Alma, L. Sacchi, K. Bourtzis, M. Mandrioli, A. Cherif, C. Bandi and D. Daffonchio. 2010. Acetic acid bacteria, newly emerging symbionts of insects. Applied and Environmental Microbiology 76:6963-6970. https://doi.org/10.1128/AEM.01336-10
  3. Dong, L., H. Ming, Y.R. Yin, Y.Y. Duan, E.M. Zhou, G.X. Nie, H.G. Feng, L. Liu and W.J. Li. 2014. Roseomonas alkaliterrae sp. nov., isolated from an alkali geothermal soil sample in Tengchong, Yunnan, South-West China. Antonie Van Leeuwenhoek 105:899-905. https://doi.org/10.1007/s10482-014-0144-1
  4. Eder, W., J. Peplies, G. Wanner, A. Fruhling and S. Verbarg. 2015. Hydrobacter penzbergensis gen. nov., sp. nov., isolated from purified water. International Journal of Systematic and Evolutionary Microbiology 65:920-926. https://doi.org/10.1099/ijs.0.000040
  5. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368-376. https://doi.org/10.1007/BF01734359
  6. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  7. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 20:406-416.
  8. Gillis, M. and J. De Ley. 1980. Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. International Journal of Systematic and Evolutionary Microbiology 30:7-27. https://doi.org/10.1099/00207713-30-1-7
  9. Han, X.Y., A.S. Pham, J.J. Tarrand, K.V. Rolston, L.O. Helsel and P.N. Levett. 2003. Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp nov and Roseomonas gilardii subsp rosea subsp nov. American Journal of Clinical Pathology 120:256-264. https://doi.org/10.1309/731VVGVCKK351Y4J
  10. Heo, J., M. Won, D. Lee, B.H. Han, S.B. Hong and S.W. Kwon. 2022. Report of eight unrecorded Acetobacter species in Korea, discovered during the survey in 2018-2019. Journal of Species Research 11:155-161.
  11. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547.
  12. Li, L., J. Praet, W. Borremans, O.C. Nunes, C.M. Manaia, I. Cleenwerck, … and P. Vandamme. 2015. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. International Journal Systematic and Evolutionary Microbiology 65:267-273. https://doi.org/10.1099/ijs.0.068049-0
  13. Margesin, R. and D.C. Zhang. 2013. Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil. International Journal Systematic and Evolutionary Microbiology 63:1411-1416 https://doi.org/10.1099/ijs.0.043018-0
  14. Muhadesi, J.B., Y. Huang, B.J. Wang, C.Y. Jiang and S.J. Liu. 2019. Acidibrevibacterium fodinaquatile gen. nov., sp. nov., isolated from acidic mine drainage. International Journal Systematic and Evolutionary Microbiology 69:3243-3250.
  15. Ramirez-Bahena, M.H., C. Tejedor, I. Martin, E. Velazquez and A. Peix. 2013. Endobacter medicaginis gen. nov., sp. nov., isolated from alfalfa nodules in an acidic soil. International Journal of Food Microbiology 63:1760-1765 https://doi.org/10.1099/ijs.0.041368-0
  16. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.
  17. Sengun, I.Y. and S. Karabiyikli. 2011. Importance of acetic acid bacteria in food industry. Food Control 22:647-656. https://doi.org/10.1016/j.foodcont.2010.11.008
  18. Takemura, H., K. Kondo, S. Horinouchi and T. Beppu. 1993. Induction by ethanol of alcohol dehydrogenase activity in Acetobacter pasteurianus. Journal of Bacteriology 175:6857-6866. https://doi.org/10.1128/jb.175.21.6857-6866.1993
  19. Wang, B., Y. Shao, T. Chen, W. Chen and F. Chen. 2015. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Scientific Reports 5:1-14. https://doi.org/10.9734/JSRR/2015/14076
  20. Yurkov, V., E. Stackebrandt, A. Holmes, J.A. Fuerst, P. Hugenholtz, J. Golecki, N. Gad'on, V.M. Gorlenko, E.I. Kompantseva and G. Drews. 1994. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. International Journal Systematic and Evolutionary Microbiology 44:427-434.