DOI QR코드

DOI QR Code

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur (Deparment of Civil Engineering, Canakkale Onsekiz Mart University, Terzioglu Campus) ;
  • Sami Arsoy (Department of Civil Engineering, Kocaeli University, Umuttepe Campus)
  • 투고 : 2023.04.28
  • 심사 : 2023.06.02
  • 발행 : 2023.06.25

초록

Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.

키워드

과제정보

The research described in this paper was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project ID: 108M297). The authors would like to appreciate and acknowledge the funding provided by TUBITAK.

참고문헌

  1. Akiyama, M., Abe, S., Aoki, N. and Suzuki, M. (2012), "Flexural test of precast high-strength reinforced concrete pile prestressed with unbonded bars arranged at the center of the cross-section", Eng. Struct., 34, 259-270. https://doi.org/10.1016/j.engstruct.2011.09.007. 
  2. Aktan, A.E., Catbas, F.N., Grimmelsman, K.A. and Tsikos C.J. (2000), "Issues in infrastructure health monitoring for management", J. Eng. Mech. Div., 126(7), 711-724. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(711). 
  3. Arsoy, S., Ozgur, M., Keskin, E. and Yilmaz C. (2013), "Enhancing TDR based water content measurements by ANN in sandy soils", Geoderma, 195-196, 133-144. https://doi.org/10.1016/j.geoderma.2012.11.019. 
  4. Baker, C.N.Jr., Drumright, E.E., Mensah, F.D., Parikh, G. and Ealy, C.D. (1991), "Use of nondestructive testing to evaluate defects in drilled shafts: Results of FHWA research", Transp. Res. Rec., 1331, 28-35. 
  5. Brownjohn, J.M., De Stefano, A., Xu, Y.L., Wenzel, H. and Aktan, E. (2011), "Vibration-based monitoring of civil infrastructure: challenges and successes", J. Civil Struct. Health Monit., 1(3-4), 79-95. https://doi.org/10.1007/s13349-011-0009-5. 
  6. Castiglione, P. and Shouse, P.J. (2003), "The effect of ohmic cable losses on time-domain reflectometry measurements of electrical conductivity", Soil Sci. Soc. Am. J., 67(2), 414-424. https://doi.org/10.2136/sssaj2003.4140. 
  7. Cerny, R. (2009), "Time-domain reflectometry method and its application for measuring moisture content in porous materials: a review", Measurement, 42(3), 329-336. https://doi.org/10.1016/j.measurement.2008.08.011. 
  8. Chakraborty, S. and Brown, D.A. (1997), "Evaluation of unknown pile length under existing bridges in Alabama", Report No. IR-97-05; Highway Research Center, Auburn University, Alabama, USA. 
  9. Chen, G.D., Mu, H., Pommerenke, D. and Drewniak, J.L. (2004), "Damage detection of reinforced concrete beams with novel distributed crack/strain sensors", Struct. Health Monit., 3(3), 225-243. https://doi.org/10.1177/1475921704045625. 
  10. Chen, G.D., Sun, S.S., Pommerenke, D., Drewniak, J.L., Green, G.G., McDaniel, R.D., Belarbi, A. and Mu, H.M. (2005), "Crack detection of a full-scale reinforced concrete girder with a distributed cable sensor", Smart Mater. Struct., 14(3), 88-97. https://doi.org/ 10.1088/0964-1726/14/3/011. 
  11. Chen, W.H., Hseuh, W., Loh, K.J. and Loh, C.H. (2022), "Damage evaluation of seismic response of structure through time-frequency analysis technique", Struct. Monit. Maint., 9(2), 107-127. https://doi.org/10.12989/smm.2022.9.2.107. 
  12. Chiou, J.S., Lin, C.L. and Chen, C.H. (2014), "Exploring influence of sectional flexural yielding on experimental pile response analysis and applicability of distributed plastic hinge model in inelastic numerical simulation for laterally loaded piles", Comput. Geotech., 56, 40-49. https://doi.org/10.1016/j.compgeo.2013.10.007. 
  13. Davis, A.G. and Robertson, S.A. (1976), "Vibration testing of piles", Struct. Eng., 54(6), 7-10.
  14. Ellsworth, D.E. and Ginnado, K. (1991), "Guide for visual inspection of structural concrete building components", Report No. TR-M-91/18; Construction Engineering Research Lab (Army), Champaign, IL, USA. 
  15. Eurocode (2004), Design of Concrete Structures. Part 1: General Rules and Rules for Buildings, European Committee for Standardization; Brussels, Belgium. 
  16. Fils, P., Jang, S. and Sherpa, R. (2021), "Field implementation of low-cost RFID-based crack monitoring using machine learning", Struct. Monit. Maint., 8(3), 257-278. https://doi.org/10.12989/smm.2021.8.3.257. 
  17. Hassan, U. and Anwar, M.S. (2010), "Reducing noise by repetition: introduction to signal averaging", Eur. J. Phys., 31(3), 453. https://doi.org/10.1088/0143-0807/31/3/003. 
  18. Hearne, T.M., Stokoe, K.H. and Reese, L.C. (1981), "Drilled-shaft integrity by wave propagation method", J. Geotech. Eng., 107(10), 1327-1344. https://doi.org/10.1061/AJGEB6.0001192. 
  19. Ho, D.D., Luu, T.H.T. and Pham, M.N (2022), "Nondestructive crack detection in metal structures using impedance responses and artificial neural networks", Struct. Monit. Maint., 9(3), 221-235. https://doi.org/10.12989/smm.2022.9.3.221. 
  20. Huang, Y.H., Ni, S.H., Lo, K.F. and Charng, J.J. (2010), "Assessment of identifiable defect size in a drilled shaft using sonic echo method: Numerical simulation", Comput. Geotech., 37(6), 757-768. https://doi.org/10.1016/j.compgeo.2010.06.002. 
  21. Large, D. and Farmer, J. (2009), Broadband cable access networks: the HFC plant, (1st Edition), Morgan Kaufmann Publishers, Burlington, Massachusetts, USA. 
  22. Ledieu, J., De Ridder, P., De Clerck, P. and Dautrebande, S. (1986), "A method of measuring soil moisture by time-domain reflectometry", J. Hydrol., 88(3-4), 319-328. https://doi.org/10.1016/0022-1694(86)90097-1. 
  23. Li, D.Q., Zhang, L.M. and Tang, W.H. (2005), "Reliability evaluation of cross-hole sonic logging for bored pile integrity", J. Geotech. Geoenviron., 131(9), 1130-1138. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1130). 
  24. Lin, C., Tang, S., Lin, W. and Chung, C.C. (2009), "Quantification of cable deformation with time domain reflectometry-Implications to landslide monitoring", J. Geotech. Geoenviron., 135(1), 143-152. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(143). 
  25. Lin, M.W. and Thaduri, J. (2006), "Structural deflection monitoring using an embedded ETDR distributed strain sensor", J. Intel. Mat. Syst. Str., 17(5), 423-430. https://doi.org/10.1177/1045389X06058631. 
  26. Lin, M.W., Abatan, A.O. and Zhang, W.M. (1999), "Crack damage detection of concrete structures using distributed electrical time domain reflectometry (ETDR) sensors", SPIE Proceedings, 3671, 297-304. https://doi.org/10.1117/12.348680. 
  27. Lin, M.W., Abatan, A.O. and Zhou, Y. (2000), "High-sensitivity electrical TDR distributed strain sensor", SPIE Proceedings, 3986, 463-471. https://doi.org/10.1117/12.388137. 
  28. Lin, M.W., Thaduri, J. and Abatan, A.O. (2005), "Development of an electrical time domain reflectometry (ETDR) distributed strain sensor", Meas. Sci. Technol., 16(7), 1495. https://doi.org/10.1088/0957-0233/16/7/012. 
  29. Liu, W., Hunsperger, R.G., Chajes, M.J., Folliard, K.J. and Kunz, E. (2002), "Corrosion detection of steel cables using time domain reflectometry", J. Mater. Civil Eng., 14(3), 217-223. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(217). 
  30. Malicki, M.A., Plagge, R. and Roth, C.H. (1996), "Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil", Eur. J. Soil Sci., 47(3), 357-366. https://doi.org/10.1111/j.1365-2389.1996.tb01409.x. 
  31. Mao, Q., Mazzotti, M., DeVitis, J., Braley, J., Young, C., Sjoblom, K., Aktan, E., Moon, F. and Bartoli, I. (2019), "Structural condition assessment of a bridge pier: A case study using experimental modal analysis and finite element model updating", Struct. Control Health., 26(1), e2273. https://doi.org/10.1002/stc.2273. 
  32. Ni, S.H. and Huang, Y.H. (2013), "Integrity evaluation of PCC piles using the surface reflection method", Exp. Techniques, 37(4), 63-73. https://doi.org/10.1111/j.1747-1567.2012.00832.x. 
  33. Ni. S.H., Huang, Y.H., Zhou, X.M. and Lo, K.F. (2011), "Inclination correction of the parallel seismic test for pile length detection", Comput. Geotech., 38(2), 127-132. https://doi.org/10.1016/j.compgeo.2010.10.002. 
  34. Park, H.S., Lee, H.M., Adeli, H. and Lee, I. (2007), "A new approach for health monitoring of structures: terrestrial laser scanning", Comput. Aided Civ. Inf., 22(1), 19-30. https://doi.org/10.1111/j.1467-8667.2006.00466.x. 
  35. Pozar, D.M. (2012), Microwave engineering, (4th Edition), John Wiley & Sons, Inc., Hoboken, New Jersey, USA. 
  36. Qin, H., Xie, X., Vrugt, J.A., Zeng, K. and Hong, G. (2016), "Underground structure defect detection and reconstruction using crosshole GPR and Bayesian waveform inversion", Automat. Constr., 68, 156-169. https://doi.org/10.1016/j.autcon.2016.03.011. 
  37. Rausche, F., Renkung, S. and Likins, G.E. (1991), "Comparison of pulse echo and transient response pile integrity test methods", Transp. Res. Rec., 1331, 21-27. 
  38. Recber (2023), Coaxial cables; Recber Cable, Tekirdag, Turkey. https://www.recber.com.tr/productshowcase/coaxial-cables/?lang=en 
  39. Rizzo, P. and Enshaeian, A. (2021), "Bridge health monitoring in the United States: A review", Struct. Monit. Maint., 8(1), 1-50. https://doi.org/10.12989/smm.2021.8.1.001. 
  40. Stangl, R., Buchan, G.D. and Loiskandl, W. (2009), "Field use and calibration of a TDR-based probe for monitoring water content in a high-clay landslide soil in Austria", Geoderma, 150(1-2), 23-31. https://doi.org/10.1016/j.geoderma.2009.01.002. 
  41. Tektronix (2008), TDR Impedance Measurements: A Foundation for Signal Integrity, Application Note No. 55W-14601-2, Tektronix Inc., Beaverton, Oregon, USA. 
  42. Topp, G.C., Davis, J.L. and Annan, A.P. (1980), "Electromagnetic determination of soil water content: measurements in coaxial transmission lines", Water Resour. Res., 16(3), 574-582. https://doi.org/10.1029/WR016i003p00574. 
  43. Wang, M., Ding, Y., Wan, C. and Zhao, H. (2020), "Big data platform for health monitoring systems of multiple bridges", Struct. Monit. Maint., 7(4), 345-365. https://doi.org/10.12989/smm.2020.7.4.345. 
  44. Yeum, C.M., Choi, J. and Dyke, S.J. (2018), "Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure", Struct. Health Monit., 18(3): 675-689. https://doi.org/10.1177/1475921718765419. 
  45. Yu, X. and Yu, X. (2011), "Assessment of an automation algorithm for TDR bridge scour monitoring system", Adv. Struct. Eng., 14(1), 13-24. https://doi.org/10.1260/1369-4332.14.1.13. 
  46. Zhou, Z., Jiao, T., Zhao, P., Liu, J. and Xiao, H. (2016), "Development of a distributed crack sensor using coaxial cable", Sensors, 16(8), 1198. https://doi.org/10.3390/s16081198.