DOI QR코드

DOI QR Code

12/4 SynRel machine design with concentrated windings and novel polynomial fitting model-based continuous MTPA control method

  • Gan Zhang (School of Electrical Engineering, Southeast University) ;
  • Anjian Qiu (School of Electrical Engineering, Southeast University) ;
  • Taixun Zhang (School of Electrical Engineering, Southeast University) ;
  • Wei Hua (School of Electrical Engineering, Southeast University) ;
  • Xibin Guo (Beijing Institute of Precision Mechatronics and Controls)
  • Received : 2023.02.03
  • Accepted : 2023.05.22
  • Published : 2023.07.20

Abstract

This paper proposes a 12-stator slot/4-rotor pole (12/4) synchronous reluctance (SynRel) machine with integral slot concentrated windings (ISCW), a segmented stator, and a skewed rotor, namely the 12/4 ISCW machine. The proposed 12/4 ISCW machine exhibits comparable torque performance when compared to the case of adopting an integral slot distributed winding (ISDW) with the same total stack length. A comparison study is conducted on the 12/4 ISCW machine, a 24/4 ISDW machine, and 6/4 fractional slot concentrated winding (FSCW) machines. Then a torque prediction method and a continuous maximum torque per ampere (MTPA) control based on the polynomial fitting model (PFM) are proposed for SynRel machines, to provide fast and accurate calculation of the real-time inductances and torque. Magnetic saturations are also considered in the PFM, which is why the PFM has great potential in the maximum-current-per-torque control of SynRel machines. Finally, a prototype of the proposed 12/4 ISCW SynRel machine is manufactured and experimental validations are carried out.

Keywords

Acknowledgement

This work is supported in part by the National Nature Science Foundation of China under Grant 52077032, 51991380, 51937006, in part by the Fundamental Research Funds for the Central Universities under Grant 2242020R40130, in part by the Challenge Cup National College Student Curricular Academic Science and Technology Works Competition, in part by the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission under Grant LASAT-2022-B01-01

References

  1. Shen, J., Lin, Y., Sun, Y., Qin, X., Wan, X., Cai, S.: Permanent magnet synchronous reluctance machines with axially combined rotor structure. IEEE Trans. Magn. 58(2), 8103310 (2022)
  2. Degano, M., Murataliyev, M., Wang, S., Barater, D., Buticchi, G., Jara, W., Bianchi, N., Galea, M., Gerada, C.: Optimised design of permanent magnet assisted synchronous reluctance machines for household appliances. IEEE Trans. Energy Convers. 36(4), 3084-3095 (2021) https://doi.org/10.1109/TEC.2021.3076675
  3. Murataliyev, M., Degano, M., Nardo, M.D., Bianchi, N., Gerada, C.: Synchronous reluctance machines: a comprehensive review and technology comparison. Proc. IEEE 110(3), 382-399 (2022) https://doi.org/10.1109/JPROC.2022.3145662
  4. Bao, Y., Degano, M., Wang, S., Chuan, L., Zhang, H., Zhuang, X., Gerada, C.: A novel concept of ribless synchronous reluctance motor for enhanced torque capability. IEEE Trans. Ind. Electron. 67(4), 2553-2563 (2020) https://doi.org/10.1109/TIE.2019.2914616
  5. Lopez-Torres, C., Bacco, G. Bianchi, N., Espinosa, A.G., Romeral, L.: A parallel analytical computation of synchronous reluctance machine. International Conference on Electrical Machines (ICEM), 25-31 (2018)
  6. Babetto, C., Bacco, G., Bianchi, N.: Synchronous reluctance machine optimization for high-speed applications. IEEE Trans. Energy Convers. 33(3), 1266-1273 (2018) https://doi.org/10.1109/TEC.2018.2800536
  7. Murataliyev, M., Degano, M., Galea, M.: A novel sizing approach for synchronous reluctance machines. IEEE Trans. Ind. Electron. 68(3), 2083-2095 (2021) https://doi.org/10.1109/TIE.2020.2975461
  8. Inte, R.A., Jurca, F.N., Martis, C.: Design and analysis of outer rotor permanent magnet assisted synchronous reluctance machine with concentrated winding for small electric propulsion. AEIT International Annual Conference (AEIT) (2019).
  9. Lehner, B., Gerling, D.: Design considerations for concentrated winding synchronous reluctance machines. IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 485-490 (2016)
  10. Ferrari, M., Bianchi, N., Fornasiero, E.: Rotor saturation impact in synchronous reluctance and PM assisted reluctance motors. IEEE Energy Conversion Congress and Exposition (ECCE), 1235-1242 (2013)
  11. Spargo, C.M., Mecrow, B.C., Widmer, J.D., Morton, C.: Application of fractional-slot concentrated windings to synchronous reluctance motors. IEEE Trans. Ind. Appl. 51(2), 1446-1455 (2015) https://doi.org/10.1109/TIA.2014.2341733
  12. Donaghy-Spargo, C.M.: Electromagnetic-mechanical design of synchronous reluctance rotors with fine features. IEEE Trans. Magn. 53(11), 8206308 (2017)
  13. Donaghy-Spargo, C.M., Mecrow, B.C., Widmer, J.D.: Electromagnetic analysis of a synchronous reluctance motor with single-tooth windings. IEEE Trans. Magn. 53(11), 8206207 (2017)
  14. Babetto, C., Bianchi, N., Torreggiani, A., Bianchini, C., Davoli, M., Bellini, A.: Optimal design and experimental validation of a synchronous reluctance machine for fault-tolerant applications. IEEE Energy Conversion Congress and Exposition (ECCE), 4880-4887 (2019)
  15. Gamba, M., Pellegrino, G., Armando, E., Ferrari, S.: Synchronous reluctance motor with concentrated windings for IE4 efficiency. IEEE Energy Conversion Congress and Exposition (ECCE), 3905-3912 (2017)
  16. Ma, X., Li, G.J., Zhu, Z.Q., Jewell, G.W., Green, J.: Investigation on synchronous reluctance machines with different rotor topologies and winding configurations. IET Electr. Power Appl. 12(1), 45-53 (2018) https://doi.org/10.1049/iet-epa.2017.0199
  17. Pop-Piglesan, F., Pop, A.C., Martis, C.: Synchronous reluctance machines for automotive cooling fan systems: numerical and experimental study of different slot-pole combinations and winding types. Energies 14, 460 (2021)
  18. Lehner, B., Gerling, D.: Design and comparison of concentrated and distributed winding synchronous reluctance machines. IEEE Energy Conversion Congress and Exposition (ECCE), 1-8, (2016)
  19. Lin, F., Huang, M., Chen, S., Hsu, C.: Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent legendre fuzzy neural network. IEEE Trans. Power Electron. 34(12), 12080-12094 (2019)
  20. Cupertino, F., Pellegrino, G., Gerada, C.: Design of synchronous reluctance motors with multi objective optimization algorithms. IEEE Trans. Ind. Appl. 50(6), 3617-3627 (2014) https://doi.org/10.1109/TIA.2014.2312540
  21. Palmieri, M., Perta, M., Cupertino, F., Pellegrino, G.: Effect of the numbers of slots and barriers on the optimal design of synchronous reluctance machines. International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 260-267 (2014)
  22. Gamba, M., Pellegrino, G., Cupertino, F.: Optimal number of rotor parameters for the automatic design of synchronous reluctance machines. International Conference on Electrical Machines (ICEM), 1334-1340 (2014)
  23. You, Y., Yoon, K.: Multi-objective optimization of permanent magnet synchronous motor for electric vehicle considering demagnetization. Appl. Sci. 11, 2159 (2021)
  24. Gan, C., Li, X., Yu, Z., Ni, K., Wang, S., Qu, R.: Modular seven-leg switched reluctance motor drive with flexible winding configuration and fault-tolerant capability. IEEE Trans. Transp. Electrification. Early access, doi: https://doi.org/10.1109/TTE.2022.3225228 (2022)
  25. Yu, Z., Gan, C., Ni, K., Chen, Y., Qu, R.: A simplified PWM strategy for open-winding flux modulated doubly-salient reluctance motor drives with switching action minimization. IEEE Trans. Ind. Electron. 70(3), 2241-2253 (2023)