Acknowledgement
This work is supported in part by the National Nature Science Foundation of China under Grant 52077032, 51991380, 51937006, in part by the Fundamental Research Funds for the Central Universities under Grant 2242020R40130, in part by the Challenge Cup National College Student Curricular Academic Science and Technology Works Competition, in part by the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission under Grant LASAT-2022-B01-01
References
- Shen, J., Lin, Y., Sun, Y., Qin, X., Wan, X., Cai, S.: Permanent magnet synchronous reluctance machines with axially combined rotor structure. IEEE Trans. Magn. 58(2), 8103310 (2022)
- Degano, M., Murataliyev, M., Wang, S., Barater, D., Buticchi, G., Jara, W., Bianchi, N., Galea, M., Gerada, C.: Optimised design of permanent magnet assisted synchronous reluctance machines for household appliances. IEEE Trans. Energy Convers. 36(4), 3084-3095 (2021) https://doi.org/10.1109/TEC.2021.3076675
- Murataliyev, M., Degano, M., Nardo, M.D., Bianchi, N., Gerada, C.: Synchronous reluctance machines: a comprehensive review and technology comparison. Proc. IEEE 110(3), 382-399 (2022) https://doi.org/10.1109/JPROC.2022.3145662
- Bao, Y., Degano, M., Wang, S., Chuan, L., Zhang, H., Zhuang, X., Gerada, C.: A novel concept of ribless synchronous reluctance motor for enhanced torque capability. IEEE Trans. Ind. Electron. 67(4), 2553-2563 (2020) https://doi.org/10.1109/TIE.2019.2914616
- Lopez-Torres, C., Bacco, G. Bianchi, N., Espinosa, A.G., Romeral, L.: A parallel analytical computation of synchronous reluctance machine. International Conference on Electrical Machines (ICEM), 25-31 (2018)
- Babetto, C., Bacco, G., Bianchi, N.: Synchronous reluctance machine optimization for high-speed applications. IEEE Trans. Energy Convers. 33(3), 1266-1273 (2018) https://doi.org/10.1109/TEC.2018.2800536
- Murataliyev, M., Degano, M., Galea, M.: A novel sizing approach for synchronous reluctance machines. IEEE Trans. Ind. Electron. 68(3), 2083-2095 (2021) https://doi.org/10.1109/TIE.2020.2975461
- Inte, R.A., Jurca, F.N., Martis, C.: Design and analysis of outer rotor permanent magnet assisted synchronous reluctance machine with concentrated winding for small electric propulsion. AEIT International Annual Conference (AEIT) (2019).
- Lehner, B., Gerling, D.: Design considerations for concentrated winding synchronous reluctance machines. IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 485-490 (2016)
- Ferrari, M., Bianchi, N., Fornasiero, E.: Rotor saturation impact in synchronous reluctance and PM assisted reluctance motors. IEEE Energy Conversion Congress and Exposition (ECCE), 1235-1242 (2013)
- Spargo, C.M., Mecrow, B.C., Widmer, J.D., Morton, C.: Application of fractional-slot concentrated windings to synchronous reluctance motors. IEEE Trans. Ind. Appl. 51(2), 1446-1455 (2015) https://doi.org/10.1109/TIA.2014.2341733
- Donaghy-Spargo, C.M.: Electromagnetic-mechanical design of synchronous reluctance rotors with fine features. IEEE Trans. Magn. 53(11), 8206308 (2017)
- Donaghy-Spargo, C.M., Mecrow, B.C., Widmer, J.D.: Electromagnetic analysis of a synchronous reluctance motor with single-tooth windings. IEEE Trans. Magn. 53(11), 8206207 (2017)
- Babetto, C., Bianchi, N., Torreggiani, A., Bianchini, C., Davoli, M., Bellini, A.: Optimal design and experimental validation of a synchronous reluctance machine for fault-tolerant applications. IEEE Energy Conversion Congress and Exposition (ECCE), 4880-4887 (2019)
- Gamba, M., Pellegrino, G., Armando, E., Ferrari, S.: Synchronous reluctance motor with concentrated windings for IE4 efficiency. IEEE Energy Conversion Congress and Exposition (ECCE), 3905-3912 (2017)
- Ma, X., Li, G.J., Zhu, Z.Q., Jewell, G.W., Green, J.: Investigation on synchronous reluctance machines with different rotor topologies and winding configurations. IET Electr. Power Appl. 12(1), 45-53 (2018) https://doi.org/10.1049/iet-epa.2017.0199
- Pop-Piglesan, F., Pop, A.C., Martis, C.: Synchronous reluctance machines for automotive cooling fan systems: numerical and experimental study of different slot-pole combinations and winding types. Energies 14, 460 (2021)
- Lehner, B., Gerling, D.: Design and comparison of concentrated and distributed winding synchronous reluctance machines. IEEE Energy Conversion Congress and Exposition (ECCE), 1-8, (2016)
- Lin, F., Huang, M., Chen, S., Hsu, C.: Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent legendre fuzzy neural network. IEEE Trans. Power Electron. 34(12), 12080-12094 (2019)
- Cupertino, F., Pellegrino, G., Gerada, C.: Design of synchronous reluctance motors with multi objective optimization algorithms. IEEE Trans. Ind. Appl. 50(6), 3617-3627 (2014) https://doi.org/10.1109/TIA.2014.2312540
- Palmieri, M., Perta, M., Cupertino, F., Pellegrino, G.: Effect of the numbers of slots and barriers on the optimal design of synchronous reluctance machines. International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 260-267 (2014)
- Gamba, M., Pellegrino, G., Cupertino, F.: Optimal number of rotor parameters for the automatic design of synchronous reluctance machines. International Conference on Electrical Machines (ICEM), 1334-1340 (2014)
- You, Y., Yoon, K.: Multi-objective optimization of permanent magnet synchronous motor for electric vehicle considering demagnetization. Appl. Sci. 11, 2159 (2021)
- Gan, C., Li, X., Yu, Z., Ni, K., Wang, S., Qu, R.: Modular seven-leg switched reluctance motor drive with flexible winding configuration and fault-tolerant capability. IEEE Trans. Transp. Electrification. Early access, doi: https://doi.org/10.1109/TTE.2022.3225228 (2022)
- Yu, Z., Gan, C., Ni, K., Chen, Y., Qu, R.: A simplified PWM strategy for open-winding flux modulated doubly-salient reluctance motor drives with switching action minimization. IEEE Trans. Ind. Electron. 70(3), 2241-2253 (2023)