DOI QR코드

DOI QR Code

Two-degree-of-freedom internal model control for toroidal motor based on internal disturbance observer

  • Xin Liu (Tianjin Key Laboratory of Modern Electromechanical Equipment Technology, Tiangong University) ;
  • Zhengyang Wang (Tianjin Key Laboratory of Modern Electromechanical Equipment Technology, Tiangong University) ;
  • Xiaoyuan Wang (School of Electrical and Information Engineering, Tianjin University)
  • Received : 2022.03.07
  • Accepted : 2023.02.05
  • Published : 2023.07.20

Abstract

A toroidal motor is a novel type of space motor. The existence of planets in the composite rotor structure influences the output characteristic of the electromagnetic torque for the toroidal motor. Based on the spatial structure and working principle of the toroidal motor, the motion of the planet tooth is analyzed, and its influence on the output torque is studied. A dynamic model of a toroidal motor is established with nonlinear electromagnetic parameters. The output response with a periodic fluctuation is analyzed. To improve the output performance of the toroidal motor, a two-degree-of-freedom (2DOF) internal model controller is designed to accelerate the response speed and reduce the steady-state error. However, periodic fluctuations of the toroidal motor cannot be eliminated under the 2DOF internal model control (IMC). To solve the problem of periodic fluctuation, an internal disturbance observer (IDOB) is designed. Research results show that the 2DOF IMC based on the designed IDOB strategy can effectively eliminate periodic fluctuations of toroidal motor, and improve the tracking effect, anti-load disturbance, and robust performance of the toroidal motor.

Keywords

Acknowledgement

This work was supported in part by National Natural Science Foundation of China under Grant 51875408, in part by the Tianjin Research Innovation Project for Postgraduate Students under Grant 2021YJSB229.

References

  1. Shi, T., Yan, Y., Zhou, Z., Xiao, M., Xia, C.: Linear quadratic regulator control for PMSM drive systems using nonlinear disturbance observer. IEEE Trans. Power Electron. 35(5), 5093-5101 (2020) https://doi.org/10.1109/TPEL.2019.2947259
  2. Xiao, D., Nalakath, S., Rotli, S., et al.: Universal full-speed sensorless control scheme for interior permanent magnet synchronous motors. IEEE Trans. Power Electron. 36(4), 4723-4737 (2021) https://doi.org/10.1109/TPEL.2020.3023140
  3. Li, H., Zhao, Y., Li, B., Li, G., Cui, L.: Torque calculation of permanent magnet spherical motor based on virtual work method. IEEE Trans. Ind. Electron. 67(9), 7736-7745 (2020) https://doi.org/10.1109/TIE.2019.2944055
  4. Xu, L., Hao, X.: Dynamics of mechanical system for electromechanical integrated toroidal drive under electric disturbance. J. Cent. South Univ. 21(4), 1296-1306 (2014) https://doi.org/10.1007/s11771-014-2066-5
  5. Hong, M., Yao, L.: Entity modeling of toroidal drive based on tooth surface grid. China Mech. Eng. 25(7), 867-872 (2014)
  6. Xu, L., Jin, H., Hao, X.: Dynamic response of toroidal drive to mesh parametric excitations. Proc. J Mech Eng Sci. 219(9), 889-900 (2005) https://doi.org/10.1243/095440605X31814
  7. Liu, X., Wang, Y.: Analysis on torque ripple characteristics for toroidal electromechanical drive. Mech. Sci. Technol. Aerosp. Eng. 37(6), 867-872 (2018)
  8. Liu, X., Hou, M. (2019) Dynamic characteristic analysis of permanent magnet toroidal motor. In: Proceedings of the 38th Chinese Control Conference. Guangzhou. 22: 7174-7179.
  9. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Elect. 63(2), 1083-1095 (2016) https://doi.org/10.1109/TIE.2015.2478397
  10. Sun, X., Shi, Z., Chen, L., Yang, Z.: Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method. IEEE Trans. Energy Con. 31(4), 1539-1548 (2017) https://doi.org/10.1109/TEC.2016.2591925
  11. Liu, J., Yin, Z., Bai, C., Du, N.: Internal model control of induction motors based on extended state observer. J. Power Electron. 20(1), 163-175 (2020) https://doi.org/10.1007/s43236-019-00025-2
  12. Yin, Z., Zang, D., Cai, J.: A vector control method based on three-degree-of-freedom internal model control for permanent magnet synchronous motor. Trans. China Electrotech. Soc. 32(21), 59-68 (2017)
  13. Zhang, J., Liu, Z., Pei, R.: Two-degree-of-freedom internal model control for AC servo system. Trans. China Electrotech. Soc. 4, 45-48 (2002)
  14. Li, P., Zhu, G., Zhang, M.: Linear active disturbance rejection control for servo motor systems with input delay via internal model control rules. IEEE Trans. Ind. Electron. 68(2), 1077-1086 (2020)
  15. Liu, T., Gao, F.: New insight into internal model control filter design for load disturbance rejection. IET Control Theory Appl. 4(3), 448-460 (2010) https://doi.org/10.1049/iet-cta.2008.0472
  16. Zhu, Q., Yin, Z., Zhang, Y., et al.: Research on two-degree-of-freedom internal model control strategy for induction motor based on immune algorithm. IEEE Trans. Ind. Electron. 63(3), 1981-1992 (2016) https://doi.org/10.1109/TIE.2015.2512222
  17. Sun, X., Zhang, Y., Lei, G., Guo, Y., Zhu, J.: An improved deadbeat predictive stator flux control with reduced-order disturbance observer for in-wheel PMSMs. IEEE-ASME Trans. Mechatron. 27(2), 690-700 (2022) https://doi.org/10.1109/TMECH.2021.3068973
  18. Xu, W., Dian, R., Liu, Y., Hu, D., Zhu, J.: Robust flux estimation method for linear induction motors based on improved extended state observers. IEEE Trans. Power Electron. 34(5), 4628-4640 (2019) https://doi.org/10.1109/TPEL.2018.2865800
  19. Zhang, T., Xu, Z., Gerada, C.: A nonlinear extended state observer for sensorless IPMSM drives with optimized gains. IEEE Trans. Ind. Appl. 56(2), 1485-1494 (2020) https://doi.org/10.1109/TIA.2019.2959537
  20. Li, X., Zhang, S., Zhang, C., Zhou, Y., Zhang, C.: An improved deadbeat predictive current control scheme for open-winding permanent magnet synchronous motors drives with disturbance observer. IEEE Trans. Power Electron. 36(4), 4622-4632 (2021) https://doi.org/10.1109/TPEL.2020.3024227
  21. Wang, Y., Yu, H., Liu, Y.: Speed-current single-Loop control with overcurrent protection for PMSM based on time-varying nonlinear disturbance observer. IEEE Trans. Ind. Electron. 69(1), 179-189 (2022) https://doi.org/10.1109/TIE.2021.3051594
  22. Chu, H., Gao, B., Gu, W., Chen, H.: Low-speed control for permanent-magnet DC torque motor using observer-based nonlinear triple-step controller. IEEE Trans. Ind. Electron. 64(4), 3286-3296 (2017) https://doi.org/10.1109/TIE.2016.2598298
  23. Bai, C., Yin, Z., Zhang, Y., Liu, J.: Robust predictive control for linear permanent magnet synchronous motor drives based on an augmented internal model disturbance observer. IEEE Trans. Ind. Electron. 69(10), 9771-9782 (2022) https://doi.org/10.1109/TIE.2022.3140532
  24. Woldegiorgis, A., Ge, X., Wang, H., Hassan, M.: A new frequency adaptive second-order disturbance observer for sensorless vector control of interior permanent magnet synchronous motor. IEEE Trans. Ind. Electron. 68(12), 11847-11857 (2021) https://doi.org/10.1109/TIE.2020.3047065
  25. Xu, L., Li, R., Song, W.: Permanent magnetic toroidal drive with half stator. Adv. Mech. Eng. 9(1), 1-7 (2017)
  26. Liu, X., Li, D., Zuo, L.: Modeling and control for an integrated permanent magnet toroidal motor drive with nonlinear electromagnetic parameters. Appl. Math. Model. 89, 154-170 (2020)
  27. Liu, X., Xu, L., Nie, L.: Structure and characteristic analysis of a novel toroidal motor with hybrid excitation. Proc. CSEE. 35(20), 5335-5343 (2015)
  28. Xu, L., Liu, X.: Speed fluctuation and control of an electromechanical integrated toroidal drive. J Syst Control Eng. 221(13), 519-529 (2007) https://doi.org/10.1243/09596518JSCE344