DOI QR코드

DOI QR Code

Additive biocomponents from catfish by-products enhance the growth of shrimp Litopenaeus vannamei

  • Pham Viet Nam ( Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry) ;
  • Tran Vy Hich ( Institute of Aquaculture, Nha Trang University) ;
  • Nguyen Van Hoa ( Faculty of Food Technology, Nha Trang University) ;
  • Khuong V. Dinh ( Institute of Aquaculture, Nha Trang University) ;
  • Nguyen Cong Minh ( Institute of Biotechnology and Environment, Nha Trang University) ;
  • Trang Si Trung ( Faculty of Food Technology, Nha Trang University)
  • Received : 2023.01.17
  • Accepted : 2023.03.06
  • Published : 2023.06.30

Abstract

The rapid expansion of shrimp production requires a huge amount of protein sources from soybeans and wild-caught fishmeal; both are becoming a shortage. Meanwhile, catfish production and processing is a giant industry in Vietnam, which produce hundred thousand tonnes of protein- and lipid-rich by-products, annually. Using catfish by-products to gradually replace the traditional protein sources in shrimp aquaculture may bring triple benefits: 1) reducing pressure on wild fish exploitation for fishmeal, 2) reducing the environmental impacts of catfish by-products, and 3) increasing the value and sustainability of aquaculture production. In this study, we used catfish by-products to produce fish protein hydrolysate (FPH) and nano-hydroxyapatite (HA) as additives in feed for Pacific white shrimp (Litopenaeus vannamei). The supplement mixture of FPH and HA was added into the commercial diet (Charoen Pokphand Group [CP], 38% protein, and 6.5% lipid) to reach 38%, 38.5%, 40%, 43%, and 44% of the crude protein content. The survival and growth of shrimps were weekly assessed to day 55. The results showed that the shrimp growth was highest at 43% crude protein content in the feed as indicated by an increase of 124% and 112% in shrimp weight and length, respectively, compared to the commercial reference diet. No negative effects of adding the mixture of FPH and HA on the water quality were observed. Vibrio density was lower than 6.5 × 103 CFU/mL, which is the lowest Vibrio density negatively affecting the shrimp growth and development. These findings indicate that the mixture of FPH and HA are promising additive components in feed for post-larval shrimp L. vannamei diets.

Keywords

Acknowledgement

The authors acknowledge the Ministry of Education and Training, Vietnam, for funding this research project under grant number B2019-TSN-562-14.

References

  1. Aguilera-Rivera D, Prieto-Davo A, Rodriguez-Fuentes G, Escalante-Herrera KS, Gaxiola G. A vibriosis outbreak in the Pacific white shrimp, Litopenaeus vannamei reared in biofloc and clear seawater. J Invertebr Pathol. 2019;167:107246.
  2. Amaya EA, Davis DA, Rouse DB. Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture. 2007;262:393-401. https://doi.org/10.1016/j.aquaculture.2006.11.015
  3. Anderson I. The veterinary approach to marine prawns. In: Brown L, editor. Aquaculture for veterinarians: fish husbandry and medicine. Oxford: Pergamon Press; 1993. p. 271-96.
  4. Anderson JL, Valderrama D, Jory DE. GOAL 2019: global shrimp production review [Internet]. Seafood Alliance. 2019 [cited 2023 Mar 6]. https://www.globalseafood.org/ advocate/goal-2019-global-shrimp-production-review/
  5. Appelbaum S, Garada J, Mishra JK. Growth and survival of the white leg shrimp (Litopenaeus vannamei) reared intensively in the brackish water of the Israeli Negev Desert. Isr J Aquac Bamidgeh. 2002;54:41-8. https://doi.org/10.46989/001c.20313
  6. Araneda M, Perez EP, Gasca-Leyva E. White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture. 2008;283:13-8. https://doi.org/10.1016/j.aquaculture.2008.06.030
  7. Ariadi H, Fadjar M, Mahmudi M, Supriatna. The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. Aquac Aquar Conserv Legis. 2019;12:2103-16.
  8. Boyd CE, Gross A. Use of probiotics for improving soil and water quality in aquaculture ponds. In: Proceedings of the Special Session on Shrimp Biotechnology 5th Asian Fisheries Forum; 1998; Chiengmai, Thailand. p. 101-6.
  9. Chaabani A, Labonne L, Tercero CA, Picard JP, Advenier C, Durrieu V, et al. Optimization of vacuum coating conditions to improve oil retention in trout feed. Aquac Eng. 2020;91:102127.
  10. Chanratchakool P. Advice on aquatic animal health care: problems in Penaeus monodon culture in low salinity areas. Aquac Asia. 2003;8:54-6.
  11. da Silva Bambirra Alves FE, Carpine D, Teixeira GL, Goedert AC, de Paula Scheer A, Ribani RH. Valorization of an abundant slaughterhouse by-product as a source of highly technofunctional and antioxidant protein hydrolysates. Waste Biomass Valorization. 2021;12:263-79. https://doi.org/10.1007/s12649-020-00985-8
  12. Davis DA, Arnold CR. The design, management and production of a recirculating raceway system for the production of marine shrimp. Aquac Eng. 1998;17:193-211. https://doi.org/10.1016/S0144-8609(98)00015-6
  13. De Dios M. Fishmeal replacement with feather-enzymatic hydrolyzates co-extruded with soya-bean meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei). Aquac Nutr. 2001;7:143-51. https://doi.org/10.1046/j.1365-2095.2001.00164.x
  14. Encarnacao P. Functional feed additives in aquaculture feeds. In: Nates SF, editor. Aquafeed formulation. Oxford: Academic Press; 2016. p. 217-37.
  15. Esparza-Leal HM, Ponce-Palafox JT, Valenzuela-Quinonez W, Arredondo-Figueroa JL, Garcia-Ulloa Gomez M. Effects of density on growth and survival of juvenile pacific white shrimp, Penaeus vannamei, reared in low-salinity well water. J World Aquac Soc. 2010;41:648-54. https://doi.org/10.1111/j.1749-7345.2010.00406.x
  16. Food and Agriculture Organization of the United Nations [FAO]. The state of world fisheries and aquaculture 2022: towards blue transformation. Rome: FAO; 2022.
  17. Forster IP, Dominy W, Obaldo L, Tacon AGJ. Rendered meat and bone meals as ingredients of diets for shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture. 2003;219:655-70. https://doi.org/10.1016/S0044-8486(02)00457-X
  18. Gonzalez RA, Diaz F, Licea A, Re AD, Noemi Sanchez L, Garcia-Esquivel Z. Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures. J Therm Biol. 2010;35:218-24. https://doi.org/10.1016/j.jtherbio.2010.05.004
  19. Han D, Shan X, Zhang W, Chen Y, Wang Q, Li Z, et al. A revisit to fishmeal usage and associated consequences in Chinese aquaculture. Rev Aquac. 2018;10:493-507. https://doi.org/10.1111/raq.12183
  20. Hassan MA, Xavier M, Gupta S, Nayak BB, Balange AK. Antioxidant properties and instrumental quality characteristics of spray dried Pangasius visceral protein hydrolysate prepared by chemical and enzymatic methods. Environ Sci Pollut Res. 2019;26:8875-84. https://doi.org/10.1007/s11356-019-04144-y
  21. Hoa NV, Tảo CT, Terahara T, Hai TN. Influence of salinity on nursery-phase whiteleg shrimp (Litopenaeus vannamei) reared in a biofloc system. J Appl Aquac. 2022;34:907-21. https://doi.org/10.1080/10454438.2021.1909519
  22. Hodar AR, Vasava RJ, Mahavadiya DR, Joshi NH. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: a review. J Exp Zool India. 2020;23:13-21.
  23. Hou Y, Wu Z, Dai Z, Wang G, Wu G. Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J Anim Sci Biotechnol. 2017;8:24.
  24. Jin Y, Liu FJ, Liu YJ, Tian LX. Dietary phenylalanine requirement of the juvenile Pacific white shrimp Litopenaeus vannamei (Boone) reared in low-salinity water. J Shellfish Res. 2019;38:35-41. https://doi.org/10.2983/035.038.0103
  25. Kang HK, Lee HH, Seo CH, Park Y. Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar Drugs. 2019;17:350.
  26. Leduc A, Zatylny-Gaudin C, Robert M, Corre E, Corguille GL, Castel H, et al. Dietary aquaculture by-product hydrolysates: impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets. BMC Genom. 2018;19:396.
  27. Li CC, Chen JC. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under low and high pH stress. Fish Shellfish Immunol. 2008;25:701-9. https://doi.org/10.1016/j.fsi.2008.01.007
  28. Liao IC, Chien YH. The pacific white shrimp, Litopenaeus vannamei, in Asia: the world's most widely cultured alien crustacean. In: Galil BS, Clark PF, Carlton JT, editors. In the wrong place - alien marine crustaceans: distribution, biology and impacts. Dordrecht: Springer; 2011. p. 489-519.
  29. Markey JC, Amaya EA, Davis DA. Replacement of poultry by-product meal in production diets for the Pacific white shrimp, Litopenaeus vannamei. J World Aquac Soc. 2010;41:893-902. https://doi.org/10.1111/j.1749-7345.2010.00432.x
  30. McGraw WJ, Davis DA, Teichert-Coddington D, Rouse DB. Acclimation of Litopenaeus vannamei postlarvae to low salinity: influence of age, salinity endpoint, and rate of salinity reduction. J World Aquac Soc. 2002;33:78-84. https://doi.org/10.1111/j.1749-7345.2002.tb00481.x
  31. Nam PV, Van Hoa N, Anh TTL, Trung TS. Towards zero-waste recovery of bioactive compounds from catfish (Pangasius hypophthalmus) by-products using an enzymatic method. Waste Biomass Valoriz. 2020;11:4195-206. https://doi.org/10.1007/s12649-019-00758-y
  32. Nam PV, Van Hoa N, Trung TS. Properties of hydroxyapatites prepared from different fish bones: a comparative study. Ceram Int. 2019;45:20141-7. https://doi.org/10.1016/j.ceramint.2019.06.280
  33. Roslan J, Yunos KFM, Abdullah N, Kamal SMM. Characterization of fish protein hydrolysate from tilapia (Oreochromis niloticus) by-product. Agric Agric Sci Procedia. 2014;2:312-9. https://doi.org/10.1016/j.aaspro.2014.11.044
  34. Sahebian S, Zebarjad SM, Sajjadi SA, Sherafat Z, Lazzeri A. Effect of both uncoated and coated calcium carbonate on fracture toughness of HDPE/CaCO3 nanocomposites. J Appl Polym Sci. 2007;104:3688-94. https://doi.org/10.1002/app.25644
  35. Samocha TM, Lawrence AL, Collins CA, Castille FL, Bray WA, Davies CJ, et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. J Appl Aquac. 2004;15:1-19. https://doi.org/10.1300/J028v15n03_01
  36. Sasidharan A, Venugopal V. Proteins and co-products from seafood processing discards: their recovery, functional properties and applications. Waste Biomass Valoriz. 2020;11:5647-63. https://doi.org/10.1007/s12649-019-00812-9
  37. Soares M, Rezende PC, Correa NM, Rocha JS, Martins MA, Andrade TC, et al. Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquac Rep. 2020;17:100344.
  38. Sookying D, Silva FSD, Davis DA, Hanson TR. Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture. 2011;319:232-9. https://doi.org/10.1016/j.aquaculture.2011.06.014
  39. Tan B, Mai K, Zheng S, Zhou Q, Liu L, Yu Y. Replacement of fish meal by meat and bone meal in practical diets for the white shrimp Litopenaeus vannamei (Boone). Aquac Res. 2005;36:439-44. https://doi.org/10.1111/j.1365-2109.2005.01223.x
  40. Tran HV, Carve M, Dong DT, Dinh KV, Nguyen Khac B. Marine protected areas ineffectively protect seagrass and coral reef fish communities in the Phu Quoc and An Thoi archipelago, Vietnam. Aquat Conserv Mar Freshw Ecosyst. 2022;32:1471-89. https://doi.org/10.1002/aqc.3862
  41. Wyban J, Walsh WA, Godin DM. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture. 1995;138:267-79. https://doi.org/10.1016/0044-8486(95)00032-1
  42. Zamora-Sillero J, Gharsallaoui A, Prentice C. Peptides from fish by-product protein hydrolysates and its functional properties: an overview. Mar Biotechnol. 2018;20:118-30. https://doi.org/10.1007/s10126-018-9799-3