Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1C1C1006481).
References
- Bagheri, A., Monsef, H., and Lesani, H. (2015). "Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions." International Journal of Electrical Power & Energy Systems, Vol. 73, pp. 56-70. https://doi.org/10.1016/j.ijepes.2015.03.010
- Bragalli, C., Neri, M., and Toth, E. (2019). "Effectiveness of smart meter-based urban water loss assessment in a real network with synchronous and incomplete readings." Environmental Modelling & Software, Vol. 112, pp. 128-142. https://doi.org/10.1016/j.envsoft.2018.10.010
- Brentan, B.M., Meirelles, G.L., Manzi, D., and Luvizotto, E. (2018). "Water demand time series generation for distribution network modeling and water demand forecasting." Urban Water Journal, Vol. 15, No. 2, 150-158. https://doi.org/10.1080/1573062X.2018.1424211
- Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., and Bengio, Y. (2014). "Generative adversarial networks, 1-9." arXivpreprint, arXiv:1406.2661.
- Jang, H., Jung, D., and Jun, S. (2022). "Comparison of ANN model's prediction performance according to the level of data uncertainty in water distribution network." Journal of Korea Water Resources Association, Vol. 55, No. 12, pp. 1295-1303. https://doi.org/10.3741/JKWRA.2022.55.S-1.1295
- Jun, S., Jung, D., and Lansey, K.E. (2021). "Comparison of imputation methods for end-user demands in water distribution systems." Journal of Water Resources Planning and Management, Vol. 147, No. 12, 04021080.
- Jung, D., Chung, G., and Kim, J.H. (2010). Optimal design of water distribution systems considering uncertainties in demands and roughness coefficients. Water Distribution Systems Analysis 2010, In 12th Annual Conference, Tucson, AZ, U.S., pp. 1390-1399.
- Kabir, G., Tesfamariam, S., Hemsing, J., and Sadiq, R. (2020). "Handling incomplete and missing data in water network database using imputation methods." Sustainable and Resilient Infrastructure, Vol. 5, No. 6, pp. 365-377. https://doi.org/10.1080/23789689.2019.1600960
- Karras, T., Laine, S., and Aila, T. (2019). "A style-based generator architecture for generative adversarial networks." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401-4410.
- Mirza, M., and Osindero, S. (2014). "Conditional generative adversarial nets." arXivpreprint, arXiv:1411.1784.
- Rodriguez, R., Pastorini, M., Etcheverry, L., Chreties, C., Fossati, M., Castro, A., and Gorgoglione, A. (2021). "Water-quality data imputation with a high percentage of missing values: A machine learning approach." Sustainability, Vol. 13, No. 11, 6318.
- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). "Highresolution image synthesis with latent diffusion models." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, U.S., pp. 10684-10695.
- Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., and Webb, R. (2017). "Learning from simulated and unsupervised images through adversarial training." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, U.S., pp. 2107-2116.
- Sun, S., Yeh, C.F., Hwang, M.Y., Ostendorf, M., and Xie, L. (2018). Domain adversarial training for accented speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Calgary, Canada, pp. 4854-4858.
- Zanfei, A., Menapace, A., Brentan, B.M., and Righetti, M. (2022). "How does missing data imputation affect the forecasting of urban water demand?." Journal of Water Resources Planning and Management, Vol. 148, No. 11, 04022060.