DOI QR코드

DOI QR Code

Rate-dependent shearing response of Toyoura sand addressing influence of initial density and confinement: A visco-plastic constitutive approach

  • Mousumi Mukherjee (School of Civil and Environmental Engineering, Indian Institute of Technology Mandi) ;
  • Siddharth Pathaka (School of Civil and Environmental Engineering, Indian Institute of Technology Mandi)
  • Received : 2022.02.20
  • Accepted : 2023.06.15
  • Published : 2023.07.25

Abstract

Rate-dependent mechanical response of sand, subjected to loading of medium to high strain rate range, is of interest for several civilian and military applications. Such rate-dependent response can vary significantly based on the initial density state of the sand, applied confining pressure, considered strain rate range, drainage condition and sand morphology. A numerical study has been carried out employing a recently proposed visco-plastic constitutive model to explore the rate-dependent mechanical behaviour of Toyoura sand under drained triaxial loading condition. The model parameters have been calibrated using the experimental data on Toyoura sand available in published literature. Under strain rates higher than a reference strain rate, the simulation results are found to be in good agreement with the experimentally observed characteristic shearing behaviour of sand, which includes increased shear strength, pronounced post-peak softening and suppressed compression. The rate-dependent response, subjected to intermediate strain rate range, has further been assessed in terms of enhancement of peak shear strength and peak friction angle over varying initial density and confining pressure. The simulation results indicate that the rate-induced strength increase is highest for the dense state and such strength enhancements remain nearly independent of the applied confinement level.

Keywords

Acknowledgement

The corresponding author would like to thank SERB (Grant No. ECR/2018/002141) for the financial support toward carrying out this research work.

References

  1. Abrantes, A.E. and Yamamuro, J.A. (2002), "Experimental and data analysis techniques used for high strain rate tests on cohesionless soil", Geotech. Test. J., 25(2), 128-141. https://www.astm.org/gtj11356j.html. https://doi.org/10.1520/GTJ11356J
  2. Andrade, J.E., Chen, Q., Le, P.H., Avila, C.F. and Evans, T.M. (2012), "On the rheology of dilative granular media: bridging solid-and fluid-like behavior", J. Mech. Phys Solids, 60(6), 1122-1136. https://doi.org/10.1016/j.jmps.2012.02.011.
  3. Augustesen, A., Liingaard, M. and Lade, P. (2004), "Evaluation of time-dependent behavior of soils", Int. J. Geomech., 4(3), 137-156. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137).
  4. Azeiteiro, R.J., Coelho, P.A., Taborda, D.M. and Grazina, J.C. (2017), "Critical state-based interpretation of the monotonic behavior of Hostun sand", J. Geotech. Geoenviron. Eng., 143(5), 04017004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001659.
  5. Boukpeti, N., Mroz, Z. and Drescher, A. (2004), "Modeling rate effects in undrained loading of sands", Can. Geotech. J., 41(2), 342-350. https://doi.org/10.1139/t03-077.
  6. Casagrande, A. and Shannon, W.L. (1949), "Strength of soils under dynamic loads", Transactions of the ASCE, 114(1), 755-772. https://doi.org/10.1061/TACEAT.0006198.
  7. Chen, S.J., Yin, D.W., Jiang, N., Wang, F. and Guo, W.J. (2019), "Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer", Geomech. Eng., 17(4), 333-342. https://doi.org/10.12989/gae.2019.17.4.333.
  8. Desai, C.S. and Zhang, D. (1987), "Viscoplastic models for geologic materials with generalized flow rule", Int. J. Numer. Anal. Method. Geomech., 11, 603-620. https://doi.org/10.1002/NAG.1610110606.
  9. Doanh, T. and Ibraim, E. (2000), "Minimum undrained strength of Hostun RF sand", Geotechnique, 50(4), 377-392. https://doi.org/10.1680/geot.2000.50.4.377.
  10. Emerson, M.W. and Hendron Jr., A.J. (1971), "Measurement of stress and strain during one dimensional compression of large compacted soil and Rockfill specimens", Contract Report S-71-4. Urbana, IL: Dept. of Civil Engineering, University of Illinois.
  11. Farr, J.V. (1986), "Loading rate effects on the one-dimensional compressibility of four partially saturated soils", Ph.D. Dissertation, University of Michigan, Michigan.
  12. Farr, J.V. (1990), "One-dimensional loading-rate effects", J. Geotech. Eng., 116(1), 119-135. https://doi.org/10.1061/(ASCE)07339410(1990)116:1(119).
  13. Gajo, A. and Muir Wood, D. (1999), "A kinematic hardening constitutive model for sands: the multiaxial formulation", Int. J. Numer. Anal. Method. Geomech., 23(9), 925-965. https://doi.org/10.1002/(SICI)1096-9853(19990810) 23:9<925::AID-NAG19>3.0.CO;2-M.
  14. Hardin, B.O. and Black, W.L. (1966), "Sand stiffness under various triaxial stresses", J. Soil Mech. Found. Eng. Div. ASCE, 91(2), 353-369. https://doi.org/10.1061/JSFEAQ.0000865.
  15. Higgins, W., Chakraborty, T. and Basu, D. (2013), "A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast", Int. J. Numer. Anal. Method. Geomech., 37, 2590-2610. https://doi.org/10.1002/nag.2153.
  16. Holscher, P., Van Tol, A.F. and Huy, N.Q. (2012), "Rapid pile load tests in the geotechnical centrifuge", Soils Found., 52(6), 1102-1117. https://doi.org/10.1016/j.sandf.2012.11.024.
  17. Jackson, J.G., Ehrgott, J.Q. and Rohani, B. (1980), "Loading rate effects on compressibility of sand", J. Geotech. Eng. Div., 106(8), 839-852. https://erdclibrary.erdc.dren.mil/jspui/bitstream/11681/11052/1/MP-SL-79-24.pdf. 1052/1/MP-SL-79-24.pdf
  18. Karimpour, H. and Lade, P.V. (2010), "Time effects relate to crushing in sand", J. Geotech. Geoenviron. Eng., 136(9), 1209-1219. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000335.
  19. Katona, M. (1984), "Evaluation of viscoelastic cap model", J. Geotech. Eng., 110(8), 1106-1125. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:8(1106).
  20. Karunawardena, A., Oka, F. and Kimoto, S. (2011), "Elastoviscoplastic modeling of the consolidation of Sri Lankan peaty clay", Geomech. Eng., 3(3), 233-254. https://doi.org/10.12989/gae.2011.3.3.233.
  21. Kongkitkul, W., Tatsuoka, F., Duttine, A., Kawabe, S., Enomoto, T. and Di Benedetto, H. (2008), "Modelling and simulation of rate-dependent stress-strain behavior of granular materials in shear", Soils Found., 48(2), 175-194. https://doi.org/10.3208/sandf.48.175.
  22. Lade, P.V. and Karimpour, H. (2010), "Static fatigue controls particle crushing and time effects in granular materials", Soils Found., 50(5), 573-583. https://doi.org/10.3208/sandf.50.573.
  23. Lee, K.L., Seed, H.B. and Dunlop, P. (1969), "Effect of transient loading on the strength of sand", Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico.
  24. Li, F.L., Li, J.Z. and Kongkitkul, W. (2009), "Strain rate effects on sand and its quantitative analysis", J. Central South Univ. Technol., 16(4), 658-662. https://doi.org/10.1007/s11771-009-0109-0.
  25. Martindale, H., Higgins, W., Chakraborty, T. and Basu, D. (2010), "Two-surface viscoplastic sand model for high-rate loading", Proceedings of International Conference on Geotechnical Engineering, Tunisia, March.
  26. Mokni, M. and Desrues, J. (1999), "Strain localization measurements in undrained plane-strain biaxial tests on Hostun RF sand", Mechanics of Cohesive-frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 4(4), 419-441. https://doi.org/10.1002/(SICI)10991484(199907)4:4%3C419::AID-CFM70%3E3.0.CO;2-1.
  27. Monkul, M.M. (2013), "Influence of gradation on shear strength and volume change behavior of silty sands", Geomech. Eng., 5(5), 401-417. http://dx.doi.org/10.12989/gae.2013.5.5.401.
  28. Mukherjee, M. (2016), "Instabilities and rate-dependency in mechanical behavior of sand", Ph.D. Dissertation, Indian Institute of Technology Kanpur, Kanpur.
  29. Mukherjee, M., Gupta, A. and Prashant, A. (2021), "A rate-dependent model for sand to predict constitutive response and instability onset", Acta Geotechnica, 16, 93-111. https://doi.org/10.1007/s11440-020-00988-8.
  30. Omidvar, M., Iskander, M. and Bless, S. (2012), "Stress-strain behavior of sand at high strain rates", Int. J. Impact Eng., 49, 192-213. https://doi.org/10.1016/j.ijimpeng.2012.03.004.
  31. Park, C.S. and Tatsuoka, F. (1994), "Anisotropic strength and deformation of sands in plane strain compression", Proceedings of International conference on Soil Mechanics and Foundation Engineering, New Delhi.
  32. Perzyna, P. (1963), "The constitutive equations for rate sensitive plastic materials", Q. Appl. Math., 20(4), 321-332. https://doi.org/10.1090/qam/144536.
  33. Perzyna, P. (1966), "Fundamental problems in viscoplasticity", Adv. Appl. Mech., 9, 244368. https://doi.org/10.1016/S0065-2156(08)70009-7.
  34. Prabhu, S. and Qiu, T. (2022), "Simulation of split hopkinson pressure bar tests on sands using the discrete-element method", Int. J. Geomech., 22(2), 06021036. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002262.
  35. Safa, M., Maleka, A., Arjomand, M.A., Khorami, M. and Shariati, M. (2019), "Strain rate effects on soil-geosynthetic interaction in fine-grained soil", Geomech. Eng., 19(6), 533-542. https://doi.org/10.12989/gae.2019.19.6.533.
  36. Safdar, M., Newson, T., Schmidt, C., Sato, K., Fujikawa, T. and Shah, F. (2021), "Shear wave velocity of fiber reinforced cemented Toyoura silty sand", Geomech. Eng., 25(3), 207-219. https://doi.org/10.12989/gae.2021.25.3.207.
  37. Seed, H.B. and Lundgren, R. (1954), "Investigation of the effect of transient loading on the strength and deformation characteristics of saturated sands", Am. Soc. Test. Materi., 54, 1288-1306. https://www.issmge.org/uploads/publications/1/38/1969_01_0031.pdf
  38. Shi, Z., Wood, D.M., Huang, M. and Hambleton, J.P. (2021), "Tay creep: a multi-mechanism model for rate-dependent deformation of soils", Geotechnique, 1-13. https://doi.org/10.1680/jgeot.21.00084.
  39. Suescun-Florez E. and Iskander, M. (2017), "Effect of fast constant loading rates on the global behavior of sand in triaxial compression", Geotech. Test. J., 40(1), 52-71. https://www.astm.org/gtj20150253.html. https://doi.org/10.1520/GTJ20150253
  40. Suescun-Florez, E., Omidvar, M., Iskander, M. and Bless, S. (2015), "Review of high strain rate testing of granular soils", Geotech. Test. J., 38(4), 511-536. https://www.astm.org/gtj20140267.html. https://doi.org/10.1520/GTJ20140267
  41. Tong, X. and Tuan, C.Y. (2007), "Viscoplastic cap model for soils under high strain rate loading", J. Geotech. Geoenviron. Eng., 133(2), 206-214. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(206).
  42. Verdugo, R. and Ishihara, K. (1996), "The steady state of sandy soils", Soils Found., 36(2), 81-91. https://doi.org/10.3208/sandf.36.2_81.
  43. Wang, W.M., Sluys, L.J. and De Borst, R. (1997), "Viscoplasticity for instabilities due to strain softening and strain-rate softening", Int. J. Numer. Method. Eng., 40(20), 3839-3864. https://doi.org/10.1002/(SICI)10970207(19971030)40:20%3C3839::AID-NME245%3E3.0.CO;2-6.
  44. Wang, Z. and Wong, R.C.K. (2010), "Effect of grain crushing on 1D compression and 1D creep behavior of sand at high stresses", Geomech. Eng., 2(4), 303-319. http://dx.doi.org/10.12989/gae.2010.2.4.303.
  45. Watanabe, K. and Kusakabe, O. (2013), "Reappraisal of loading rate effects on sand behavior in view of seismic design for pile foundation", Soils Found., 53(2), 215-231. https://doi.org/10.1016/j.sandf.2013.02.003.
  46. Whitman, R.V. and Healy, K.A. (1962), "Shearing strength of sands during rapid loading", Transactions of ASCE, 128(1), 1553-1594. https://ascelibrary.org/doi/10.1061/JSFEAQ.0000411.
  47. Whitman, R.V. (1957), "The behavior of soils under transient loading", Proceedings of the 4th International conference on Soil Mechanics, London.
  48. Wood, D.M. (2004), Geotechnical Modelling, CRC Press (Taylor and Francis group), Boca Raton, Florida, US.
  49. Wood, D.M. and Belkheir, K. (1994), "Strain softening and state parameter for sand modelling", Geotechnique, 44(2), 335-339. https://www.icevirtuallibrary.com/doi/pdf/10.1680/geot.1994.44.2.335.
  50. Yamamuro, J.A., Abrantes, A.E. and Lade, P.V. (2011), "Effect of strain rate on the stress-strain behavior of sand", J. Geotech. Geoenviron. Eng., 137(12), 1169-1178. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000542.
  51. Yamamuro, J.A. and Lade, P.V. (1993), "Effects of strain rate on instability of granular soils". Geotech. Test. J., 16(3), 304-313. https://www.astm.org/gtj10051j.html. 10051j.html