DOI QR코드

DOI QR Code

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin (Department of Civil and Environmental Engineering, University of Ulsan)
  • 투고 : 2022.06.16
  • 심사 : 2023.06.12
  • 발행 : 2023.07.25

초록

Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

키워드

과제정보

This research was supported by Research Funds from the National Research Foundation of Korea (KNRF-2022R1A2C200823612) and Korea Institute of Marine Science & Technology Promotion (KIMST-20220364).

참고문헌

  1. Ahmed, A., Ugai, K. and Yang, Q. (2012), "Assessment of 3D slope stability analysis methods based on 3D simplified Janbu and Hovland methods", Int. J. Geomech., 12, 81-89. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000117.
  2. Baker, R., Shukha, R., Operstein, V. and Frydman, S. (2006), "Stability charts for pseudo-static slope stability analysis", Soil Dyn. Earthq. Eng., 26, 813-823. https://doi.org/10.1016/j.soildyn.2006.01.023.
  3. Baligh, M.M. and Azzouz, A.S. (1975), "End effects on stability of cohesive slopes", ASCE J. Geotech. Eng. Div., 101(11), 1105-1117. https://doi.org/10.1061/AJGEB6.0000210
  4. Baum, R.L., Savage, W.Z. and Godt, J.W. (2008), TRIGRS - A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0. U. S. Geological Survey.
  5. Bray, J. and Travasarou, T. (2009), "Pseudostatic coefficient for use in simplified seismic slope stability evaluation", J. Geotech. Geoenviron. Eng., 135, 1336-1340. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000012.
  6. Camargo, J., Velloso, R. and Vargas, E. (2016), "Numerical limit analysis of three-dimensional slope stability problems in catchment areas", Acta Geotechnica, 11(6), 1369-1383. https://doi.org/10.1007/s11440-016-0459-3.
  7. Chen, W.F. and Scawthorn, C. (1968), Limit analysis and limit equilibrium solutions in soil mechanics. Fritz Laboratory Reports.
  8. Cheng, Y.M., Liu, H., Wei, W. and Au, S. (2005), "Location of critical three-dimensional non-spherical failure surface by NURBS functions and ellipsoid with applications to highway slopes", Comput. Geotech., 32, 387-399. https://doi.org/10.1016/j.compgeo.2005.07.004.
  9. Cheng, Y.M. and Yip, C. (2007), "Three-dimensional asymmetrical slope stability analysis extension of Bishop's, Janbu's, and Morgenstern-Price's Techniques", J. Geotech. Geoenviron. Eng., 133(12), 1544-1555. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1544).
  10. Deusdado, N., Antao, A.N., Silva, M.V.D. and Guerra, N. (2016), "Application of the upper and lower-bound theorems to three-dimensional stability of slopes", Procedia Eng., 143, 674-681. https://doi.org/10.1016/j.proeng.2016.06.097.
  11. Donald, I.B. and Chen, Z.Y. (1997), "Slope stability analysis by the upper bound approach: Fundamentals and methods", Can. Geotech. J., 34, 853-862. https://doi.org/10.1139/t97-061.
  12. Dongping, D., Liang, L. and Zhao L. (2017), "LEM for stability analysis of 3D slopes with general-shaped slip surfaces", Int. J. Geomech., 17(10). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000987.
  13. Gao, Y., Zhang, F., Lei, G., Li, D., Wu, Y. and Zhang, N. (2013), "Stability charts for 3D failures of homogeneous slopes", J. Geotech. Geoenviron. Eng., 139, 1528-1538. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000866.
  14. Gens, A., Hutchison, J.N. and Cavounidis, S. (1988), "Three dimensional analysis of slopes in cohesive soils", Geotechnique, 38(1), 1-23. https://doi.org/10.1680/geot.1988.38.1.1
  15. Griffiths, D.V. and Marquez, R.M. (2007), "Three-dimensional slope stability analysis by elasto-plastic finite elements", Geotechnique, 57(6), 537-546. https://doi.org/10.1680/geot.2007.57.6.537.
  16. Huang, C.C. and Tsai, C.C. (2000), "New method for 3D and asymmetrical slope stability analysis", J. Geotech. Geoenviron. Eng., 126, 917-927. https://doi.org/10.1139/cgj-2017-0317.
  17. Huang, C.C., Tsai, C.C. and Chen, Y.H. (2002), "Generalized method for three dimensional slope stability analysis", J. Geotech. Geoenviron. Eng., 128(10), 836-848. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(836).
  18. Hungr, O., Salgado, F.M. and Byrne, P.M. (1989), "Evaluation of a three-dimensional method of slope stability analysis", Can. Geotech. J., 26(4), 679-686. https://doi.org/10.1139/t89-079.
  19. Ji, J. (2014), "Sensitivity-based reliability analysis of earth slopes using finite element method", Geomech. Eng., 6(6), 545-560. https://doi.org/10.12989/gae.2014.6.6.545.
  20. Jibson, R. (2011), "Methods for assessing the stability of slopes during earthquakes - A retrospective", Eng. Geol., 122, 43-50. https://doi.org/10.1016/j.enggeo.2010.09.017.
  21. Kim, J., Jeong, S. and Bae, D. (2014), "GIS-based prediction method of landslide susceptibility using a rainfall infiltration-groundwater flow model", Eng. Geol., 182, 63-78. https://doi.org/10.1016/j.enggeo.2014.09.001.
  22. Kim, J. and Sitar, N. (2004), "Direct estimation of yield acceleration in slope stability analyses", J. Geotech. Geoenviron. Eng., 130(1), 111-115. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(111).
  23. Krahn, J. (2003), "The 2001 R.M. Hardy Lecture: The limits of limit equilibrium analyses", Can. Geotech. J., 40, 643-660. https://doi.org/10.1139/t03-024.
  24. Lam, L. and Fredlund, D.G. (1993), "General limit equilibrium model for three-dimensional slope stability analysis", Can. Geotech. J., 30(6), 905-919. https://doi.org/10.1139/t93-089.
  25. Lee, J.H., Ahn, J.K. and Park, D. (2015), "Prediction of seismic displacement of dry mountain slopes composed of a soft thin uniform layer", Soil Dyn. Earthq. Eng., 79(A), 5-16. https://doi.org/10.1016/j.soildyn.2015.08.008.
  26. Li, A.J., Merifield, R.S. and Lyamin, A.V. (2009), "Limit analysis solutions for three dimensional undrained slopes", Comput. Geotech., 36(8), 1330-1351. https://doi.org/10.1016/j.compgeo.2009.06.002.
  27. Lim, K., Lyamin, A., Cassidy, M. and Li, A.J. (2015), "Three-dimensional slope stability charts for frictional fill materials placed on purely cohesive clay", Int. J. Geomech., 16(2), 04015042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000526.
  28. Meisina, C. and Scarabelli, S. (2007), "A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils", Geomorphology, 87, 207-223. https://doi.org/10.1016/j.geomorph.2006.03.039.
  29. Michalowski, R.L. and Drescher, A. (2009), "Three-dimensional stability of slopes and excavations", Geotechnique, 59, 839-850. https://doi.org/10.1680/geot.8.P.136.
  30. Michalowski, R.L. and Martel, T. (2011), "Stability charts for 3D failures of steep slopes subjected to seismic excitation", J. Geotech. Geoenviron. Eng., 137(2), 183-189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000412.
  31. Michel, G., Kobiyama, M. and Goerl, R. (2014), "Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil", J. Soils Sediments, 14, 1266-1277. https://doi.org/10.1007/s11368-014-0886-4.
  32. Moore, I.D., Grayson, R.B. and Ladson, A.R. (1991), "Digital terrain modelling: A review of hydrological, geomorphological, and biological applications", Hydrological Processes, 5, 3-30. https://doi.org/10.1002/hyp.3360050103.
  33. Naeij, M., Ghasemi, H., Ghafarian, D. and Javanmardi, Y. (2021), "Explicit finite element analysis of slope stability by strength reduction", Geomech. Eng., 26(2), 133-146. https://doi.org/10.12989/gae.2021.26.2.133.
  34. Newmark, N.M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 15, 139-160. https://doi.org/10.1680/geot.1965.15.2.139.
  35. Pantelidis, L. and Griffiths, D. (2013), "Stability of earth slopes. Part II: Three dimensional analysis in closed-form", Int. J. Numer Anal. Method. Geomech., 37, 1987-2004. https://doi.org/10.1002/nag.2116.
  36. Pantelidis, L., Gravanis, E. and Gkotsis, K.P. (2020), "Stability assessment of soil slopes in three dimensions: The effect of the width of failure and of tension crack", Geomech. Eng., 22(4), 319-328. https://doi.org/10.12989/gae.2020.22.4.319.
  37. Qi, S., Yand, X.G., Zhou, J.W. and Lu, G.D (2019), "Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration", Geomech. Eng., 19(1), 1-9. https://doi.org/10.12989/gae.2019.19.1.001.
  38. Rao, P., Wu, J., Jiang, G., Shi, Y., Chen, Q. and Nimbalkar, S. (2021), "Seismic stability analysis for a two-stage slope", Geomech. Eng., 27(2), 189-196. https://doi.org/10.12989/gae.2021.27.2.189.
  39. Reid, M.E., Christian, S.B., Brien, D.L. and Henderson, S.T. (2015), Scoops3D-Software to analyze 3D slope stability throughout a digital landscape, U.S. Geological Survey Techniques and Method.
  40. Saulnier, G.M., Beven, K. and Obled, C. (1997), "Including spatially variable effective soil depths in TOPMODEL", J. Hydrology, 202, 158-172. https://doi.org/10.1016/S0022-1694(97)00059-0.
  41. Shin, H. and Kim, J.W. (2017), "Integrated numerical model for coupled surface-subsurface flow systems", J. Korean Soc. Hazard, 17(6), 201-206. https://doi.org/10.9798/KOSHAM.2017.17.6.201.
  42. Silvestri, V. (2006), "A three-dimensional slope stability problem in clay", Can. Geotech. J., 43, 224-228. https://doi.org/10.1139/t06-001
  43. Stianson, J.R., Fredlund, D.G. and Chan, D. (2011), "Three-dimensional slope stability based on stresses from a stress-deformation analysis", Can. Geotech. J., 48, 891-904. https://doi.org/10.1139/t11-006.
  44. Sun, C., Junrui, C., Zengguang, X. and Qin, Y. (2017), "3D stability charts for convex and concave slopes in plan view with homogeneous soil based on the strength-reduction method", International J. Geomech., 17(5), 06016034. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000809.
  45. Tran, A.T.P., Kim, A.R. and Cho, G.C. (2019), "Numerical modeling on the stability of slope with foundation during rainfall", Geomech. Eng., 17(1), 109-118. https://doi.org/10.12989/gae.2019.17.1.109.
  46. Tesfa, T., Tarboton, D., Chandler, D. and Mcnamara, J. (2009), "Modeling soil depth from topographic and land cover attributes," Water Resour. Res., 45, W10438. https://doi.org/10.1029/2008WR007474.
  47. Xie, M., Esaki, T. and Cai, M. (2004), "A GIS-based method for locating the critical 3D slip surface in a slope", Comput. Geotech., 31, 267-277. https://doi.org/10.1016/j.compgeo.2004.03.003.
  48. Xie, M., Esaki, T., Qiu, C. and Wang, C. (2006), "Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis", Comput. Geotech., 33, 260-274. https://doi.org/10.1016/j.compgeo.2006.07.003.
  49. Yu, H., Salgado, R., Sloan, S. and Kim, J. (1998), "Limit analysis versus limit equilibrium for slope stability", J. Geotech. Geoenviron. Eng., 124(1), 1-11. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(1).
  50. Zhang, F., Leshchinsky, D., Gao, Y. and Yang, S. (2018), "Three-dimensional slope stability analysis of convex turning corners", J. Geotech. Geoenviron. Eng., 144(6), 06018003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001896.