DOI QR코드

DOI QR Code

Geophysical and mechanical investigation of different environmental effects on a red-bed soft rock dam foundation

  • Liming Zhou (Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute) ;
  • Yujie Li (Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute) ;
  • Fagang Wang (Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute) ;
  • Yang Liu (Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute)
  • Received : 2022.12.28
  • Accepted : 2023.04.18
  • Published : 2023.07.25

Abstract

Red-bed soft rock is a common stratum and it is necessary to evaluate the mechanical properties and bearing capacity of red-bed soft rock mass affected by different environmental effects. This paper presents a complete procedure for evaluating the bearing capacity of red-bed soft rock by means of geophysical exploration and in-situ rock mechanics tests. Firstly, the thickness of surface loosened rock mass of red-bed soft rock was determined using geophysical prospecting method. Then, three environmental effects, including natural weathering effect, dry-wet cycling effect and concrete sealing effect, were considered. After each effect lasted for three months, in-situ rock mass mechanical tests were conducted. The test results show that the mechanical properties of rock mass considering the sealing effect of concrete were maintained. After considering the natural weathering effect, the mechanical parameters decrease to a certain extent. After considering the effect of dry-wet cycling, the decreases of mechanical parameters are the most significant. The test results confirm that the red-bed soft rock dam foundation rock mass will be significantly affected by various environmental effects. Therefore, combined with the mechanical test results, some useful implementations are proposed for the construction of a red-bed soft rock dam foundation.

Keywords

Acknowledgement

The work was supported by the Fundamental Research Funds for the Central Institutes of China (Nos. CKSF2023316/YT, CKSF2023307/YT, CKSF2021463/YT). These supports are greatly acknowledged.

References

  1. Aehnelt, M., Hilse, U., Pudlo, D., Heide, K. and Gaupp, R. (2021), "On the origin of bleaching phenomena in red bed sediments of Triassic Buntsandstein deposits in Central Germany", Geochemistry, 81(2), 125736. https://doi.org/10.1016/j.chemer.2020.125736.
  2. Azarafza, M., Ghazifard, A., Akgun, H. andAsghari-Kaljahi, E. (2019), "Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran", Geomech. Eng., 19(5), 393-405. https://doi.org/10.12989/gae.2019.19.5.393.
  3. Chen, S.H., Yang, Z.M., Wang, W.M. and Shahrour, I. (2012), "Study on rock bolt reinforcement for a gravity dam foundation", Rock Mech. Rock Eng., 45(1), 75-87. https://doi.org/10.1007/s00603-011-0179-9.
  4. Chen, G., Yang, J.S., Liu, Y., Kitahara, T. and Beer, M. (2023), "An energy-frequency parameter for earthquake ground motion intensity measure", Earthq. Eng. Struct. D., 52(2), 271-284. https://doi.org/10.1002/eqe.3752.
  5. He, J.L., Niu, F.J., Luo, F., Jiang, H.Q., He, P.F. and Ju, X. (2023), "Mechanical properties and modified binary-medium constitutive model for red-bed soft rock subjected to freeze-thaw cycles", Cold Reg. Sci. Technol., 209, 103803. https://doi.org/10.1016/j.coldregions.2023.103803.
  6. Huang, W., Jackson, M.J., Dekkers, M.J., Solheid, P., Zhang, Y., Li, S. andDing, L. (2020), "Remagnetization of red beds on the Tibetan Plateau: Mechanism and diagnosis", J. Geophys. Res. Solid Earth, 125(8), e2020JB020068, https://doi.org/10.1029/2020JB020068.
  7. Koshnaw, R.I., Stockli, D.F. and Schlunegger, F. (2019), "Timing of the Arabia-Eurasia continental collision-Evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq", Geology, 47(1), 47-50. https://doi.org/10.1130/G45499.1.
  8. Jiang, H. and Qiu, X. (2021), "Performance assessment of a newly developed and highly stable grouting material for a completely weathered granite dam foundation", Constr. Build. Mater., 299, 123956. https://doi.org/10.1016/j.conbuildmat. 2021.123956.
  9. Jiang, Q., Wang, B., Feng, X.T., Fan, Q.X., Wang, Z., Pei, S. and Jiang, S. (2019), "In situ failure investigation and time-dependent damage test for columnar jointed basalt at the Baihetan left dam foundation", Bull. Eng. Geol. Environ., 78(6), 3875-3890. https://doi.org/10.1007/s10064-018-1399-y.
  10. Li, A.R., Deng, H., Zhang, H.J., Liu, H.H. and Jiang, M.L. (2023), "The shear-creep behavior of the weak interlayer mudstone in a red-bed soft rock in acidic environments and its modeling with an improved Burgers model", Mech. Time-Dependent Mater., 27, 1-18. https://doi.org/10.1007/s11043-021-09523-y.
  11. Liu, Z., He, X.F., Fan, J. and Zhou, C.Y. (2019), "Study on the softening mechanism and control of red-bed soft rock under seawater conditions", J. Mar. Sci. Eng., 7(7), 235. https://doi.org/10.3390/jmse7070235.
  12. Liu, Z., He, X.F. and Zhou, C.Y. (2019), "Influence mechanism of different flow patterns on the softening of red-bed soft rock", J. Mar. Sci. Eng., 7(5), 155/ https://doi.org/10.3390/jmse7050155/
  13. Marat, A.R., Tamas, T., Samsudean, C. and Gheorghiu, R. (2022), "Physico-mechanical and mineralogical investigations of red bed slopes (Cluj-Napoca, Romania)", Bull. Eng. Geol. Environ., 81(2), 1-20. https://doi.org/10. 1007/ s10064-021-02542-6. https://doi.org/10.1007/s10064-021-02542-6
  14. Shahrbanouzadeh, M., Barani, G.A. and Shojaee, S. (2015), "Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam", Geomech. Eng., 9(4), 465-481. https://doi.org/10.12989/gae.2015. 9. 4.465.
  15. Shen, P.W., Tang, H.M., Huang, L. and Wang, D.J. (2019), "Experimental study of slaking properties of red-bed mudstones from the Three Gorges Reservoir area", Mar. Georesour. Geotech., 37(8), 891-901. https://doi.org/10.1080/1064119X.2018.1504839.
  16. Trumper, S., Gaitzsch, B., Schneider, J.W., Ehling, B.C., Kleeberg, R. and Rossler, R. (2020), "Late Palaeozoic red beds elucidate fluvial architectures preserving large woody debris in the seasonal tropics of central Pangaea", Sedimentology, 67(4). 1973-2012. https://doi.org/10.1111/sed.12692.
  17. Varmazyari, M., Sabbagh-Yazdi, S.R. and Mirzabozorg, H. (2021), "Coupled arch dam-reservoir-massed foundation problem under different earthquake input mechanisms", Coupled Syst. Mech., 10(5), 371-392. https://doi.org/10.12989/csm.2021.10.5.371.
  18. Wang, X., Liu, Y., Tao, Z., Wang, W. and Yang, Q. (2020), "Study on the failure process and nonlinear safety of high arch dam and foundation based on geomechanical model test", Eng. Fail. Anal., 116, 104704. https://doi.org/10.1016/j.engfailanal.2020.104704.
  19. Wilmsen, M., Fursich, F.T., Seyed-Emami, K. and Majidifard, M. R. (2021). "The upper Jurassic Garedu red bed formation of the northern tabas block: Elucidating late cimmerian tectonics in east-central Iran", Int. J. Earth Sci., 110(3), 767-790. https://doi.org/10.1007/s00531-021-01988-z.
  20. Wu, B., Niu, J., Su, H., Yang, M., Wu, Z. and Cui, X. (2019), "An approach for deformation modulus mechanism of super-high arch dams", Struct. Eng. Mech., 69(5), 557-566. https://doi.org/10.12989/sem.2019.69.5.557.
  21. Yan, L., Peng, H., Zhang, S., Zhang, R., Kasanin-Grubin, M., Lin, K. and Tu, X. (2019), "The spatial patterns of Red Beds and Danxia Landforms: Implication for the formation factors-China", Scientific Reports, 9, 1961. https://doi.org/10.1038/s41598-018-37238-7
  22. Yilmaz, D., Altunisik, A.C. and Adanur, S. (2021), "Deformation modulus of rock foundation in Deriner Arch Dam. Geomech. Eng., 26(1), 63-75. https://doi.org/10.12989/ gae.2021.26.1.063.
  23. Yu, L., Lai, H.Q., Zhou, C.Y., Liu, Z. and Zhang, L.H. (2022), "Percolation threshold of red-bed soft rock during damage and destruction", Appl. Sci., 12(15), 7615. https://doi.org/10.3390/app12157615.
  24. Zhang, Z.T. and Gao, W.H. (2020), "Effect of different test methods on the disintegration behavior of soft rock and the evolution model of disintegration breakage under cyclic wetting and drying", Eng. Geol., 279, 105888. https://doi.org/10.1016/j.enggeo.2020.105888.
  25. Zhou, C.Y., Xu, Yang., Liang, Y.H., Du, Z.C., Liu, Z., Huang, W., and Ming, W.H. (2019), "Classification of red-bed rock mass structures and slope failure modes in South China", Geosciences, 9(6), 273. https://doi.org/10.3390/geosciences9060273.
  26. Zhou, M., Li, J., Luo, Z., Sun, J., Xu, F., Jiang, Q. and Deng, H. (2021), "Impact of water-rock interaction on the pore structures of red-bed soft rock", Scientific Reports, 11, 1-15. https://doi.org/10.1038/s41598-021-86815-w