DOI QR코드

DOI QR Code

Eccentric performance of CFST columns jacketed with steel tube and sandwiched concrete

  • Weijie Li (School of Mechanics and Civil Engineering, China University of Mining & Technology-Beijing) ;
  • Yiyan Lu (School of Civil Engineering, Wuhan University) ;
  • Yue Huang (School of Civil Engineering, Wuhan University) ;
  • Shan Li (School of Civil Engineering, Wuhan University)
  • Received : 2021.05.13
  • Accepted : 2022.12.26
  • Published : 2023.07.10

Abstract

This study investigates the eccentric performance of concrete-filled steel tubular (CFST) stub columns strengthened with steel tube and sandwiched concrete (STSC) jackets. It was revealed that the STSC jacketing method effectively weakened the cracking of concrete in CFST columns on the convex side and the crash on the concave side. Substantial increases in the eccentric bearing capacities were demonstrated after strengthening. A numerical study was further conducted. The decrease in diameter-to-thickness ratio and increase in strength of outer tube contributed to increase in peak load of all components, whereas the increase in sandwiched concrete strength resulted in load increase on itself and had negligible effects on other components. The parametric study showed the effect of inner concrete strength on columns' bearing capacity was magnified after strengthening, whereas that of inner tube thickness was reduced. Within the parameters investigated, high-strength concrete and high-strength steel can be applied without the concern of early abrupt failure of inner low-strength concrete or steel tube.

Keywords

Acknowledgement

The authors would like to appreciate the financial support from the National Natural Science Foundation of China (Grant no. 52238006).

References

  1. Ahmed, M., Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2019), "Behavior of eccentrically loaded double circular steel tubular short columns filled with concrete", Eng. Struct., 201, 109790. https://doi.org/10.1016/j.engstruct.2019.109790.
  2. Ahmed, M., Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2020). "Experimental and numerical investigations of eccentrically loaded rectangular concrete-filled double steel tubular columns", J. Constr. Steel Res., 167, 105949. https://doi.org/10.1016/j.jcsr.2020.105949.
  3. Albero, V., Ibanez, C., Piquer, A. and Hernandez-Figueirido, D. (2021), "Behaviour of slender concrete-filled dual steel tubular columns subjected to eccentric loads", J. Constr. Steel Res., 176, 106365. https://doi.org/10.1016/j.jcsr.2020.106365.
  4. Almasslawi, A., Ekmekyapar, T. and AL-Eliwi, B.J.M. (2020), "Repair of buckled concrete filled steel tube columns subjected to axial compression", KSCE J. Civ. Eng., 3(24), 1-10. https://doi.org/10.1007/s12205-020-0321-x.
  5. Ekmekyapar, T. and AL-Eliwi, B.J.M. (2017). "Concrete filled double circular steel tube (CFDCST) stub columns", Eng. Struct., 135, 68-80. https://doi.org/10.1016/j.engstruct.2016.12.061.
  6. Fouche, P., Bruneau, M. and Chiarito, V.P. (2016), "Modified steel-jacketed columns for combined blast and seismic retrofit of existing bridge columns", J. Bridge Eng., 21(7), 04016035. https://doi.org/https://doi.org/10.1061/(ASCE)BE.19435592.0000882.
  7. Han, L.H., Lin, X.K. and Wang, Y.C. (2006), "Cyclic performance of repaired concrete-filled steel tubular columns after exposure to fire", Thin Wall. Struct., 44(10), 1063-1076. https://doi.org/10.1016/j.tws.2006.10.001.
  8. Han, L.H., Yao G.H. and Tao Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin Wall. Struct.,45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008
  9. Hassanein, M.F., Kharoob, O.F. and Liang, Q.Q. (2013), "Behaviour of circular concrete-filled lean duplex stainless steel-carbon steel tubular short columns", Eng. Struct., 56, 83-94. https://doi.org/10.1016/j.engstruct.2013.04.016.
  10. Huang, Y., Li, W.J., Lu, Y.Y., Liang, H.J. and Yan, Y.H. (2022), "Behaviour of CFST slender columns strengthened with steel tube and sandwiched concrete jackets under axial loading", J. Build. Eng., 45, 22. https://doi.org/10.1016/j.jobe.2021.103613.
  11. Kamil, G.M., Liang, Q.Q. and Hadi, M.N.S. (2019), "Numerical analysis of axially loaded rectangular concrete-filled steel tubular short columns at elevated temperatures", Eng. Struct., 180, 89-102. https://doi.org/10.1016/j.engstruct.2018.11.037.
  12. Li, W., Liang, H.J., Lu, Y.Y., Xue, J. and Liu, Z.Z. (2019), "Axial behavior of slender RC square columns strengthened with circular steel tube and sandwiched concrete jackets", Eng. Struct., 179, 423-437. https://doi.org/10.1016/j.engstruct.2018.11.018.
  13. Li, W.J., Liang, H.J., Li, S., Lu, Y.Y. and Huang, Y. (2022), "Analytical solution for predicting the interaction stress of axially loaded concrete-filled double-tube columns[J]", Thin Wall. Struct., 179, 109579. https://doi.org/10.1016/j.tws.2022.109579.
  14. Liang, H.J., Li, W.J., Huang, Y. and Lu, Y.Y. (2020), "Axial behaviour of CFST stub columns strengthened with steel tube and sandwiched concrete jackets", Thin Wall. Struct., 155, 106942. https://doi.org/10.1016/j.tws.2020.106942.
  15. Liew, J.Y.R. and Xiong, D.X. (2012), "Ultra-high strength concrete filled composite columns for multi-storey building construction", Adv. Struct. Eng., 15(9), 1487-1504. https://doi.org/10.1260/1369-4332.15.9.1487.
  16. Lin, P.Z., Zhu, Z.C. and Li, Z.J. (1997), "Fire-resistant structure: the concrete filled steel tubular column", International Conference on Composite Construction-Conventional and Innovative. Innsbruck, Austria.
  17. Liu, F., Wang, Y., Gardner, L. and Varma, A.H. (2019), "Experimental and numerical studies of reinforced concrete columns confined by circular steel tubes exposed to fire", J. Struct. Eng., 145(11), 04019130. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002416.
  18. Pons, D., Espinos, A., Albero, V. and Romero, M.L. (2018), "Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns", Steel Compos. Struct., 26(6). https://doi.org/https://doi.org/10.12989/scs.2018.26.6.705.
  19. Portoles, J.M., Serra, E., and Romero, M.L. (2013). "Influence of ultra-high strength infill in slender concrete-filled steel tubular columns", J. Constr. Steel Res., 86: 107-114. https://doi.org/10.1016/j.jcsr.2013.03.016.
  20. Ranzi, G., Leoni, G. and Zandonini, R. (2013), "State of the art on the time-dependent behaviour of composite steel-concrete structures", J. Constr. Steel Res., 80, 252-263. https://doi.org/10.1016/j.jcsr.2012.08.005.
  21. Rodrigues, J.P.C., Correia, A.J.P.M. and Kodur, V. (2021), "Influence of cross-section type and boundary conditions on structural behavior of concrete-filled steel tubular columns subjected to fire", J. Struct. Eng., 147(1). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002860.
  22. Romero, M.L., Ibanez, C., Espinos, A., Portoles, J.M. and Hospitaler, A. (2017), "Influence of ultra-high strength concrete on circular concrete-filled dual steel columns", Structures, 9, 13-20. https://doi.org/10.1016/j.istruc.2016.07.001.
  23. Stephens, M.T., Lehman, D.E. and Roeder, C.W. (2018), "Seismic performance modeling of concrete-filled steel tube bridges: Tools and case study", Eng. Struct., 165, 88-105. https://doi.org/10.1016/j.engstruct.2018.03.019.
  24. Tao, Z. and Han, L.H. (2007), "Behaviour of fire-exposed concrete-filled steel tubular beam columns repaired with CFRP wraps", Thin Wall. Struct., 45(1), 63-76. https://doi.org/10.1016/j.tws.2006.11.004.
  25. Wan, C.Y. and Zha, X.X. (2016), "Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading", Steel Compos. Struct., 20(3), 571-597. https://doi.org/10.12989/scs.2016.20.3.571.
  26. Xian, W., Chen, W., Hao, H., Wang, W. and Wang, R. (2021), "Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members", Compos. Struct., 255, 112993. https://doi.org/10.1016/j.compstruct.2020.112993.
  27. Zhao, X., Liang, H., Lu, Y. and Zhao, P. (2020), "Size effect of square steel tube and sandwiched concrete jacketed circular RC columns under axial compression", J. Constr. Steel Res., 166, 105912. https://doi.org/10.1016/j.jcsr.2019.105912.
  28. Zheng, J.L. and Wang, J.J. (2018), "Concrete-filled steel tube arch bridges in China", Engineering, 4(1), 143-155. https://doi.org/10.1016/j.eng.2017.12.003.
  29. Zheng, Y., He, C. and Zheng, L. (2018), "Experimental and numerical investigation of circular double-tube concrete-filled stainless steel tubular columns under cyclic loading", Thin Wall. Struct., 132, 151-166. https://doi.org/10.1016/j.tws.2018.07.058.
  30. Zheng, Y. and Tao, Z. (2019), "Compressive strength and stiffness of concrete-filled double-tube columns", Thin Wall. Struct., 134, 174-188. https://doi.org/10.1016/j.tws.2018.10.019.
  31. Zhong, S. (2003), The Concrete-filled Steel Tubular Structures (Third Edition), Tsinghua University Press, Beijing, China (in Chinese).