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Abstract. We introduce the constants E[t,X], CNJ[X] and J [t,X] to describe the asym-

metry of the norm. They can be seen as the skew version of the Gao’s parameter, von

Neumann-Jordan constant and Milman’s moduli, respectively. We establish basic proper-

ties of these constants, relating them other well known constants, and use these properties

to calculate the constants for specific spaces. We then use these constants to study Hilbert

spaces, uniformly non-square spaces and their normal structures. With the Banach-Mazur

distance, we use them to study isomorphic Banach spaces.

1. Introduction

The geometric theory of Banach spaces is an important branch of functional
analysis. It has important applications in many mathematical fields, such as ap-
proximation theory, fixed point theory. Since Clarkson [7] put forward the concept
of the modulus of convexity in 1936, geometric constants have evolved as a useful
way to compare the geometric properties of Banach spaces. Quantifying geometric
properties with numbers is an easy intuitive way to understand these properties on
a given Banach spaces. Some of the more prominant geometric constants to date are
the modulus of smoothness ρX(t) proposed by Day [15], the James constant J(X)
proposed by Gao and Lau [12], and the von Neumann-Jordan constant CNJ(X)
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proposed by Jordan and von Neumann [22]. There are, however, many other geo-
metric constants worth noting. For readers interested in this field, we recommend
the references mentioned in this paper.

Fitzpatrick and Reznick [26] introduced the skewness s(X) of a Banach space
X , which describes the asymmetry of the norm:

s(X) = sup

{

lim
t→0+

‖x+ ty‖ − ‖y + tx‖

t
: x, y ∈ SX

}

.

They showed that s(X) = 0 if and only if X is a Hilbert space, and calculated the
values of s(X) for Lp spaces where 1 ≤ p ≤ ∞. Moreover, they showed that the
uniform non-squareness of X can be described in terms of s(X). Further, based on
the work in [26], Baronti and Papini [19] established the relationship between s(X)
and ρX(1), and Mitani et al. [13] established the relationship between s(X) and
J(X). All the results mentioned above illustrate that a geometric constant which
describes the asymmetry of norm is worth studying. In this paper, we introduce
three constants, E[t,X ], CNJ[X ] and J [t,X ], all of which describe the asymmetry
of the norm.

In Section 2, we recall some necessary concepts.
In Section 3, we introduce the constant E[t,X ]. Some basic properties of E[t,X ]

are given and used to calculate the values of E[t,X ] for some specific spaces. The
relation between E[t,X ] and C′

NJ(X) is established. Also, E[t,X ] is used to study
some geometric properties of Banach spaces. Moreover, we discuss the relation of
the values of E[t,X ] for two isomorphic Banach spaces in terms of Banach-Mazur
distance.

In Section 4, we introduce the constant CNJ[X ] and use it to study Hilbert spaces
and uniformly non-square spaces. We apply results from Section 3 to establish
properties of CNJ[X ] .

In Section 5, we consider the constant J [t,X ], relate it to J [t,X∗], and use it
to study the uniformly non-square spaces.

2. Preliminaries

Throughout the paper, let X be a real Banach space with dim X ≥ 2. The unit
ball and the unit sphere of X are denoted by BX and SX , respectively. We now
recall some concepts that we need in this paper.
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Definition 2.1. ([23]) A Banach space X is said to be uniformly non-square, if
there exists δ ∈ (0, 1) such that if x, y ∈ SX then

∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

≤ 1− δ or

∥

∥

∥

∥

x− y

2

∥

∥

∥

∥

≤ 1− δ.

Definition 2.2. ([17]) A Banach space X is said to have (weak) normal structure,
if for every (weakly compact) closed bounded convex subset K in X that contains
more than one point, there exists a point x0 ∈ K such that

sup{‖x0 − y‖ : y ∈ K} < d(K) = sup{‖x− y‖ : x, y ∈ K}.

Remark 2.3. For the reflexive Banach spaces X , the normal structure and weak
normal structure coincide.

The above concepts are closely related to the fixed point property, since Kirk
[27] proved that every reflexive Banach space with normal structure has the fixed
point property in 1965.

Definition 2.4. ([14]) For isomorphic Banach spaces X and Y , the Banach-Mazur
distance between X and Y , denoted by d(X,Y ), is defined to be the infimum of
‖T ‖‖T−1‖ taken over all isomorphisms T from X onto Y , that is,

d(X,Y ) = inf{‖T ‖‖T−1‖ : T : X → Y being an isomorphism}.

3. The Constant E[t,X ]

Based on the Pythagorean theorem, Gao introduced the following two quadratic
parameters called Gao’s parameters in [9] and [10], respectively,

E(X) = sup{‖x+ y‖2 + ‖x− y‖2 : x, y ∈ SX}.

Eǫ(X) = sup{‖x+ ǫy‖2 + ‖x− ǫy‖2 : x, y ∈ SX}, 0 ≤ ǫ ≤ 1.

He showed that both uniformly non-square spaces and normal structures are closely
related to them. More results on E(X) and Eǫ(X) can be found in [2].

As mentioned in the Introduction, in this section we consider the following
constant,

E[t,X ] = sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ SX}, t ∈ R,

which can be regard as the skew version of Eǫ(X).
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3.1. Some basic conclusions about E[t,X ]

In this section, we will give some basic conclusions about E[t,X ], and calculate
the values of E[t,X ] for some specific spaces. First, we give the bounds of E[t,X ].

Proposition 3.1.1. Let X be a Banach space. Then

2(1 + t2) ≤ E[t,X ] ≤ 2(1 + t)2, t ∈ R.

Proof. By taking x, y ∈ SX such that x = y, we can easily get E[t,X ] ≥ 2(1 + t2).
In addition, by the triangle inequality, it is obvious that E[t,X ] ≤ 2(1 + t)2. 2

Next, we give the some equivalent forms of E[t,X ], which will be used in our
subsequent discussion.

Proposition 3.1.2. Let X be a Banach space. Then

(1) E[t,X ] = sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ BX}, t ∈ R.

(2) If X is a reflexive Banach space, then

E[t,X ] = sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ ext(BX)}, t ∈ R.

(3) E[t,X ] = sup{E[t,X0] : X0 ⊂ X, dim(X0) = 2}, t ∈ R.

Proof. (1) First, for any x, y ∈ BX , we have

x =
1− ‖x‖

2

(

−
x

‖x‖

)

+

(

1−
1− ‖x‖

2

)

x

‖x‖
,

y =
1− ‖y‖

2

(

−
y

‖y‖

)

+

(

1−
1− ‖y‖

2

)

y

‖y‖
.

For convenience, we denote 1−‖x‖
2 , 1− 1−‖x‖

2 , 1−‖y‖
2 , 1− 1−‖y‖

2 ,− x
‖x‖ ,

x
‖x‖ ,−

y
‖y‖ ,

y
‖y‖

by a1, a2, b1, b2, x1, x2, y1, y2, respectively. Thus

x = a1x1 + a2x2, y = b1y1 + b2y2.

It is obvious that x1, x2, y1, y2 ∈ SX and a1, a2, b1, b2 ∈ [0, 1] such that a1 + a2 =
1, b1 + b2 = 1.

Let t ∈ R. Since f(x) = x2 is a convex function on [0,∞), for any x, y ∈ BX



On Some Skew Constants in Banach Spaces 203

we have

‖x+ ty‖2 + ‖tx− y‖2

=‖

2
∑

i=1

aixi + t(

2
∑

i=1

aiy)‖
2 + ‖t(

2
∑

i=1

aixi)− (

2
∑

i=1

aiy)‖
2

=‖

2
∑

i=1

ai(xi + ty)‖2 + ‖

2
∑

i=1

ai(txi − y)‖2

≤(

2
∑

i=1

ai‖xi + ty‖)2 + (

2
∑

i=1

ai‖txi − y‖)2

≤

2
∑

i=1

ai‖xi + ty‖2 +

2
∑

i=1

ai‖txi − y‖2

=

2
∑

i=1

ai‖

2
∑

j=1

bjxi + t(

2
∑

j=1

bjyj)‖
2 +

2
∑

i=1

ai‖t(

2
∑

j=1

bjxi)− (

2
∑

j=1

bjyj)‖
2

=

2
∑

i=1

ai‖

2
∑

j=1

bj(xi + tyj)‖
2 +

2
∑

i=1

ai‖

2
∑

j=1

bj(txi − yj)‖
2

≤

2
∑

i=1

ai(

2
∑

j=1

bj‖xi + tyj‖)
2 +

2
∑

i=1

ai(

2
∑

j=1

bj‖txi − yj‖)
2

≤
2
∑

i=1

ai

2
∑

j=1

bj‖xi + tyj‖
2 +

2
∑

i=1

ai

2
∑

j=1

bj‖txi − yj‖
2

=

2
∑

i=1

ai

2
∑

j=1

bj(‖xi + tyj‖
2 + ‖txi − yj‖

2)

≤max{‖xi + tyj‖
2 + ‖txi − yj‖

2 : i = 1, 2, j = 1, 2}

≤ sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ SX}.

This shows that

E[t,X ] ≥ sup
{

‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ BX

}

, t ∈ R.

In addition, it is obvious that

E[t,X ] ≤ sup
{

‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ BX

}

, t ∈ R.

(2) Since X is a reflexive Banach space, then, according to Krein-Milman the-
orem, we know that BX = co(ext(BX)). Then, by (1), we obtain

E[t,X ] = sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ co(ext(BX))}, t ∈ R.



204 Y. Fu, Q. Liu, Z. Yang and Y. Li

Further, according to the continuity of norm, we can easily know

(3.1.1) E[t,X ] = sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ co(ext(BX))}, t ∈ R.

Now, for any x, y ∈ co(ext(BX)), there exist {xi}
nx

i=1, {yj}
ny

j=1 ∈ ext(BX) and

{ai}
nx

i=1, {bj}
ny

j=1 ∈ [0, 1] such that

x =

nx
∑

i=1

aixi, y =

ny
∑

j=1

bjyj ,

nx
∑

i=1

ai = 1,

ny
∑

j=1

bj = 1.

Moreover, since f(x) = x2 is a convex function on [0,∞), then, for any t ∈ R and
any x, y ∈ co(ext(BX)), we obtain

‖x+ ty‖2 + ‖tx− y‖2

=‖

nx
∑

i=1

aixi + t(

nx
∑

i=1

aiy)‖
2 + ‖t(

nx
∑

i=1

aixi)− (

nx
∑

i=1

aiy)‖
2

=‖

nx
∑

i=1

ai(xi + ty)‖2 + ‖

nx
∑

i=1

ai(txi − y)‖2

≤(

nx
∑

i=1

ai‖xi + ty‖)2 + (

nx
∑

i=1

ai‖txi − y‖)2

≤

nx
∑

i=1

ai‖xi + ty‖2 +

nx
∑

i=1

ai‖txi − y‖2

=

nx
∑

i=1

ai‖

ny
∑

j=1

bjxi + t(

ny
∑

j=1

bjyj)‖
2 +

nx
∑

i=1

ai‖t(

ny
∑

j=1

bjxi)− (

ny
∑

j=1

bjyj)‖
2

=

nx
∑

i=1

ai‖

ny
∑

j=1

bj(xi + tyj)‖
2 +

nx
∑

i=1

ai‖

ny
∑

j=1

bj(txi − yj)‖
2

≤

nx
∑

i=1

ai(

ny
∑

j=1

bj‖xi + tyj‖)
2 +

nx
∑

i=1

ai(

ny
∑

j=1

bj‖txi − yj‖)
2

≤

nx
∑

i=1

ai

ny
∑

j=1

bj‖xi + tyj‖
2 +

nx
∑

i=1

ai

ny
∑

j=1

bj‖txi − yj‖
2

=

nx
∑

i=1

ai

ny
∑

j=1

bj(‖xi + tyj‖
2 + ‖txi − yj‖

2)

≤max{‖xi + tyj‖
2 + ‖txi − yj‖

2 : i = 1, · · · , nx, j = 1, · · · , ny}

≤ sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ ext(BX)}.

Thus, by (3.1.1), we have

E[t,X ] ≤ sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ ext(BX)}, t ∈ R.
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Further, it is clear that

E[t,X ] ≥ sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ ext(BX)}, t ∈ R.

(3) Let t ∈ R. First, it is clear that

E[t,X ] ≥ sup{E[t,X0] : X0 ⊂ X, dim(X0) = 2}.

Second, for any ε > 0, there exist x, y ∈ SX such that

E[t,X ]− ε ≤ ‖x+ ty‖2 + ‖tx− y‖2.

Let X0 be a two-dimensional subspace of X that contains x and y, we have

E[t,X ]−ε ≤ ‖x+ty‖2+‖tx−y‖2 ≤ E[t,X0] ≤ sup{E[t,X0] : X0 ⊂ X, dim(X0) = 2}.

Let ε → 0, we can obtain

E[t,X ] ≤ sup{E[t,X0] : X0 ⊂ X, dim(X0) = 2}.

This completes the proof. 2

Now, we will use the above conclusion to calculate the values of E[t,X ] for some
spaces.

Example 3.1.3. Let X be the space R
2 with the norm defined by

‖(x1, x2)‖ = max

{
∣

∣

∣

∣

x1 +
1
√
3
x2

∣

∣

∣

∣

,

∣

∣

∣

∣

x1 −
1
√
3
x2

∣

∣

∣

∣

,
2
√
3
|x2|

}

.

Then

E[t,X ] =

{

(1 + |t|)2 + 1 |t| ≤ 1,
(1 + |t|)2 + t2 |t| ≥ 1.

Proof. First, notice that the unit ball of the this norm is a regular hexagon (see
[14]).

x2

x1
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By the above figure and some simple calculations, we can get that

ext(BX) =

{

(1, 0),

(

1

2
,

√
3

2

)

,

(

−
1

2
,

√
3

2

)

, (−1, 0),

(

−
1

2
,−

√
3

2

)

,

(

1

2
,−

√
3

2

)}

.

Now, because finite-dimensional Banach spaces must be reflexive spaces, according
to Proposition 3.1.2 (2), we can get

E[t,X ] = sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ ext(BX)}, t ∈ R.

Thus, by some simple calculations, it is not difficult for us to get

E[t,X ] =

{

(1 + |t|)2 + 1 |t| ≤ 1,
(1 + |t|)2 + t2 |t| ≥ 1.

2

EXample 3.1.4. Let X be the space R
2 with the norm defined by

‖(x1, x2)‖ =

{

‖(x1, x2)‖1 (x1x2 ≤ 0) ,
‖(x1, x2)‖∞ (x1x2 ≥ 0) .

Then

E[t,X ] =

{

(1 + |t|)2 + 1 |t| ≤ 1,
(1 + |t|)2 + t2 |t| ≥ 1.

Proof. First, because finite-dimensional Banach spaces must be reflexive spaces, by
Proposition 3.1.2 (2) we get

E[t,X ] = sup{‖x+ ty‖2 + ‖tx− y‖2 : x, y ∈ ext(BX)}, t ∈ R.

Now, since

ext(BX) = {(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)},

by some simple calculations, it is not difficult for us to get

E[t,X ] =

{

(1 + |t|)2 + 1 |t| ≤ 1,
(1 + |t|)2 + t2 |t| ≥ 1.

2

Example 3.1.5. Let X be the space R
2 with the norm defined by

‖(x1, x2)‖ =

{

‖(x1, x2)‖1 (x1x2 ≤ 0) ,
‖(x1, x2)‖2 (x1x2 ≥ 0) .
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Then

E[t,X ] =

{

2(1 + t2) + 2t t ≥ 0,
2(1 + t2)− 2t t ≤ 0.

Proof. First, we will prove that

(3.1.2) ‖x+ ty‖2 + ‖tx− y‖2 ≤ 2(1 + t2) + 2t, t ≥ 0,

holds for any x = (x1, x2), y = (y1, y2) ∈ ext(BX).
Let t ≥ 0. Then, for any x = (x1, x2), y = (y1, y2) ∈ ext(BX), we consider the

following four cases:
Case 1: x1, x2, y1, y2 ≥ 0.
Case 1a: (tx1 − y1)(tx2 − y2) ≥ 0. Then

‖x+ ty‖2 + ‖tx− y‖2 = ‖(x1 + ty1, x2 + ty2)‖
2
2 + ‖(tx1 − y1, tx2 − y2)‖

2
2

= 2(1 + t2).

Case 1b: tx1 − y1 ≥ 0, tx2 − y2 ≤ 0. Then

‖x+ ty‖2 + ‖tx− y‖2 = ‖(x1 + ty1, x2 + ty2)‖
2
2 + ‖(tx1 − y1, tx2 − y2)‖

2
1

= 2(1 + t2) + 2tx1y2 + 2tx2y1 − 2y1y2 − 2t2x1x2

≤ 2(1 + t2) + 2tx1y2 + 2tx2y1

≤ 2(1 + t2) + 2t((x2
1 + x2

2)
1

2 (y21 + y22)
1

2 )

= 2(1 + t2) + 2t.

Case 1c: tx1 − y1 ≤ 0, tx2 − y2 ≥ 0. Similar to the proof of Case 1b, we can
get

‖x+ ty‖2 + ‖tx− y‖2 ≤ 2(1 + t2) + 2t.

Thus, we obtain (3.1.2) holds for any x = (x1, x2), y = (y1, y2) ∈ ext(BX) with
x1, x2, y1, y2 ≥ 0.

Case 2: x1, x2 ≥ 0, y1, y2 ≤ 0. Let z = −y. Then, by Case 1, we obtain

‖x+ ty‖2+‖tx−y‖2 = ‖x− tz‖2+‖tx+z‖2 = ‖z+ tx‖2+‖tz−x‖2 ≤ 2(1+ t2)+2t.

Case 3: x1, x2 ≤ 0, y1, y2 ≥ 0. Similar to the proof of Case 2, we omit it.
Case 4: x1, x2 ≤ 0, y1, y2 ≤ 0. Let z = −y and w = −x. Then, by Case 1, we

obtain

‖x+ty‖2+‖tx−y‖2 = ‖−w−tz‖2+‖−tw+z‖2 = ‖w+tz‖2+‖tw−z‖2 ≤ 2(1+t2)+2t.

Consequently, we prove (3.1.2) holds.
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Now, according to Proposition 3.1.2 (2) and the fact that finite-dimensional
Banach spaces must be reflexive spaces, we can get

E[t,X ] ≤ 2(1 + t2) + 2t, t ≥ 0.

Further, put x = (1, 0) and y = (0, 1), we can get

E[t,X ] ≥ ‖x+ ty‖2 + ‖tx− y‖2 = ‖(1, t)‖22 + ‖(t,−1)‖21 = 2(1 + t2) + 2t, t ≥ 0,

which shows that E[t,X ] = 2(1 + t2) + 2t, t ≥ 0. Since, it is obvious that
E[t,X ] = E[−t,X ], t ∈ R, we can also get E[t,X ] = 2(1 + t2)− 2t, t ≤ 0. 2

3.2. The relation between C′

NJ(X) and E[t,X ]

Alonso et al. [8] introduced the following constants C
′

NJ(X) in 2008, according
to the characterization of Hilbert spaces called the rhombus law given by Day [16],

C
′

NJ(X) = sup

{

‖x+ y‖2 + ‖x− y‖2

4
: x, y ∈ SX

}

.

This constant is closely related to some geometric properties of Banach spaces and
some other constants (see [8]), and also plays an important role in the study of
Tingley’s problem (see [24]).

It is clear that 4C
′

NJ(X) = E[1, X ]. Thus, it is natural for us to ask whether

there is a relationship between C
′

NJ(X) and E[t,X ], t 6= 1. In order to answer this
question, we need to give the following result first.

Proposition 3.2.1. Let X be a Banach space. The following statements hold.

(1) E[t,X ] is a convex function of t on R.

(2) E[t,X ] is a continuous function of t on R.

(3) E[t,X ] is an even function of t on R.

(4) E[t,X ] is non-decreasing on [0,+∞) and non-increasing on (−∞, 0].

Proof. (1) Let t1, t2 ∈ R, λ ∈ (0, 1). Then, for any x, y ∈ SX , we can deduce that

‖x+ (λt1 + (1− λ)t2) y‖
2
+ ‖(λt1 + (1 − λ)t2)x− y‖

2

6 (λ ‖x+ t1y‖+ (1− λ) ‖x+ t2y‖)
2
+ (λ ‖t1x− y‖+ (1− λ) ‖t2x− y‖)

2

6λ
(

‖x+ t1y‖
2
+ ‖t1x− y‖

2
)

+ (1− λ)
(

‖x+ t2y‖
2
+ ‖t2x− y‖

2
)

6λE[t1, X ] + (1− λ)E[t2, X ],

which implies that

E[λt1 + (1 − λ)t2, X ] 6 λE[t1, X ] + (1− λ)E[t2, X ].

(2) By (1), we can obtain E[t,X ] is continuous on R.
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(3) By the definition of E[t,X ], it is obvious that E[t,X ] = E[−t,X ] holds for
any t ∈ R.

(4) Let t2 > t1 ≥ 0. Then, from (1) and (3), we have

(3.2.1) E[t1, X ] = E

[

t2 + t1
2t2

t2 +
t2 − t1
2t2

(−t2) , X

]

≤ E[t2, X ].

which deduces that E[t,X ] is non-decreasing on [0,+∞). Then, from (3), we can
obtain E[t,X ] non-increasing on (−∞, 0]. This completes the proof. 2

From the above proposition, we know that we only need to consider E[t,X ] on
t ∈ [0,∞], since E[t,X ] is an even function. Also, it is obvious that E[0, X ] = 2
for any Banach spaces. Thus, in the following discussion, we only consider E[t,X ]
with t ∈ (0,∞). Now, we use the above proposition to give the relation between
C′

NJ(X) and E[t,X ].

Proposition 3.2.2. Let X be a Banach space. Then

4tC′

NJ(X) ≤ E[t,X ] ≤ 4tC′

NJ(X) + 2max{t, 1}|t− 1|, t > 0.

Proof. Let t > 0. First, notice that, for any x, y ∈ SX , we have

∥

∥x+ 1
t y
∥

∥

2
+
∥

∥

1
tx− y

∥

∥

2

1 + 1
t2

=
‖tx+ y‖2 + ‖x− ty‖2

t2 + 1
.

From the above equality, we can imply that

(3.2.2)
E[t,X ]

1 + t2
=

E
[(

1
t

)

, X
]

1 + 1
t2

.

Now, since E[t,X ] is convex function and (3.2.2), we obtain

E[1, X ] = E

[(

1

1 + t
· t+

(

1−
1

1 + t

)

·
1

t

)

, X

]

≤
1

1 + t
E[t,X ] +

(

1−
1

1 + t

)

E

[

1

t
,X

]

=
1 + t2

1 + t

E[t,X ]

1 + t2
+

1 + t2

t(1 + t)

E
[

1
t , X

]

1 + 1
t2

=
1 + t2

1 + t

E[t,X ]

1 + t2
+

1 + t2

t(1 + t)

E[t,X ]

1 + t2

=
1

t
E[t,X ],

which implies that 4tC′

NJ(X) ≤ E[t,X ].
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For the other inequality, we divide the proof into the following two cases.
Case 1 : 0 < t < 1. Using E[t,X ] is a convex function again, we have

E[t,X ] = E[(t · 1 + (1 − t) · 0), X ]

≤ tE[1, X ] + (1 − t)E[0, X ]

= 4tC′

NJ(X) + 2(1− t),

and hence E[t,X ] ≤ 4tC′

NJ(X) + 2max{t, 1}|t− 1|.
Case 2. : t ≥ 1. According to (3.2.2) and Case 1, we have

E[t,X ]

1 + t2
=

E
[

1
t , X

]

1 + 1
t2

≤
4t

1 + t2
C′

NJ (X) +
2t(t− 1)

1 + t2
,

which means that

E[t,X ] ≤ 4tC′

NJ(X) + 2max{t, 1}|t− 1|.

This completes the proof. 2

3.3. The relations between E[t,X ] and some geometric properties of Ba-

nach spaces

Next, we will discuss the relations between E[t,X ] and some geometric proper-
ties of Banach spaces. First, we will use the following lemma to characterize Hilbert
spaces by E[t,X ].

Lemma 3.3.1. ([4]) A normed space X is an inner product space if and only if for

all x, y ∈ SX there exist λ, µ 6= 0 such that

(3.3.1) ‖λx+ µy‖2 + ‖µx− λy‖2 ≈ 2(λ2 + µ2),

where ≈ means either ≤ or ≥.

Theorem 3.3.2. Let X be a Banach space. Then the following statements are

equivalent.

(1) E[t,X ] = 2(1 + t2) for all t ∈ (0,∞).
(2) E[t,X ] = 2(1 + t2) for some t ∈ (0,∞).
(3) X is a Hilbert space.

Proof. (1)⇒(2). Obvious.
(2)⇒(3). Since E[t,X ] = 2(1 + t2) holds for some t ∈ (0,∞), we can deduce

that there exists t0 ∈ (0,∞) such that

‖x+ t0y‖
2 + ‖t0x− y‖2 6 2

(

1 + t20
)

, x, y ∈ SX .

Then, from Lemma 3.3.1, we know that X is a Hilbert space.
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(3)⇒(1). Since X is a Hilbert space, then, for any t ∈ (0,∞) and x, y ∈ SX , we
obtain

‖x+ ty‖2+‖tx−y‖2 = ‖x‖2+2t〈x, y〉+ t2‖y‖+ t2‖x‖2−2t〈x, y〉+‖y‖2 = 2(1+ t2).

This shows that E[t,X ] = 2(1 + t2) for all t ∈ (0,∞). 2

Remark 3.3.3. The above conclusion also shows that the lower bound of E[t,X ]
given in Proposition 3.1.1 is sharp.

Second, we will give the relation between E[t,X ] and uniformly non-square
spaces.

Theorem 3.3.4. Let X be a Banach space. Then the following statements are

equivalent.

(1) E[t,X ] < 2(1 + t)2 for all t ∈ (0,∞).
(2) E[t,X ] < 2(1 + t)2 for some t ∈ (0,∞).
(3) X is uniformly non-square.

Proof. It is clear that we only need to show that the following statements are
equivalent

(i) E[t,X ] = 2(1 + t)2 for all t ∈ (0,∞).
(ii) E[t,X ] = 2(1 + t)2 for some t ∈ (0,∞).
(iii) X is not uniformly non-square.
(i) ⇒ (ii). Obvious.
(ii) ⇒ (iii). Since E[t,X ] = 2(1 + t)2 for some t ∈ (0,∞), we can deduce that

there exists t0 ∈ (0,∞) and xn, yn ∈ SX such that,

‖xn + t0yn‖
2 + ‖t0xn − yn‖

2 → 2(1 + t0)
2.

Notice that ‖xn + t0yn‖
2 ≤ (1 + t0)

2 and ‖t0xn − yn‖
2 ≤ (1 + t0)

2, thus we obtain

‖xn + t0yn‖
2 → (1 + t0)

2, ‖t0xn − yn‖
2 → (1 + t0)

2.

Further, we obtain

‖xn + t0yn‖ → 1 + t0, ‖t0xn − yn‖ → 1 + t0,

which can deduces that

‖xn + yn‖ → 2, ‖xn − yn‖ → 2.

So, X is not uniformly non-square.
(iii) ⇒ (i). Since X is not uniformly non-square , there exist xn, yn ∈ SX such

that

‖xn + yn‖ → 2, ‖xn − yn‖ → 2.



212 Y. Fu, Q. Liu, Z. Yang and Y. Li

Thus, for all t ∈ (0,∞), we obtain

‖xn + tyn‖ → 1 + t, ‖txn − yn‖ → 1 + t.

Furthermore, from Proposition 3.1.1, then we obtain

2(1 + t)2 ≥ E[t,X ] ≥ ‖xn + tyn‖
2 + ‖txn − yn‖

2, t ∈ (0,∞)

Let n → ∞, we obtain E[t,X ] = 2(1 + t)2 for all t ∈ (0,∞). 2

Remark 3.3.5. The above conclusion also shows that the upper bound of E[t,X ]
given in Proposition 3.1.1 is sharp.

Finally, we use E[t,X ] to give a sufficient condition for normal structure by the
following lemma.

Definition 3.3.6. ([11]) Let X be a Banach space, a hexagon H in X is called a
normal hexagon if the length of each side of H is 1 and each pair of opposite sides
are parallel.

Lemma 3.3.7. ([11]) Let X be a Banach space without weak normal structure,

then for any ǫ, 0 < ǫ < 1, and x1 ∈ SX , there exists an inscribed normal hexagon

with vertices x1, x2, x3,−x1,−x2 and −x3 ∈ SX satisfying

(1) x1 = x2 − x3.

(2) ‖(x1 + x2)/2‖, ‖(x3 + (−x1))/2‖ > 1− ǫ.

Theorem 3.3.8. Let X be a Banach space. Then

(1) Let t ∈ [ 23 , 1]. If E[t,X ] < 5t2 − 2t+ 2, then X has normal structure.

(2) Let t ∈ [1, 32 ]. If E[t,X ] < 2t2 − 2t+ 5, then X has normal structure.

Proof. (1) Let t ∈ [ 23 , 1]. According to Theorem 3.3.4, we know that X is uniformly
non-square when E[t,X ] < 5t2− 2t+2. Hence X is reflexive (see [23]), and normal
structure and weak normal structure coincide. So, we only need to show that X
has weak normal structure.

Now, suppose conversely that X does not have weak normal structure. By
Lemma 3.3.7, for any ǫ ∈ (0, 1), there exist x1, x2, x3 ∈ SX such that

x1 = x2 − x3, ‖(x1 + x2)/2‖ > 1− ǫ, ‖(x3 + (−x1))/2‖ > 1− ǫ.

Now, we have

‖x1 + tx2‖ = ‖(x1 + x2)− (1 − t)x2‖

≥ ‖x1 + x2‖ − ‖(1− t)x2‖

≥ 2− 2ǫ− (1− t)

= 1 + t− 2ǫ,
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and

‖tx1 − x2‖ = ‖tx1 + tx2 − tx2 − x2‖

= ‖tx1 + tx2 − t(x1 + x3)− x2‖

= ‖t(x1 − x3) + (t− 1)x2 − tx1‖

≥ ‖t(x1 − x3)‖ − ‖(t− 1)x2 − tx1‖

≥ (2 − 2ǫ)t− (1− t+ t)

= (2 − 2ǫ)t− 1.

Thus, we obtain

E[t,X ] ≥ ‖x1 + tx2‖
2 + ‖tx1 − x2‖

2 ≥ (1 + t− 2ǫ)2 + ((2− 2ǫ)t− 1)2.

Let ǫ → 0, we have

E[t,X ] ≥ (1 + t)2 + (2t− 1)2 = 5t2 − 2t+ 2.

This contradicts E[t,X ] < 5t2 − 2t+ 2.
(2) Let t ∈ [1, 3

2 ]. By (3.2.2), we have E
[

1
t , X

]

= 1
t2E[t,X ]. Further, since

E[t,X ] < 2t2 − 2t+ 5, we get

E

[

1

t
,X

]

=
1

t2
E[t,X ] <

1

t2
(2t2 − 2t+ 5) = 5

1

t2
− 2

1

t
+ 2,

which implies that X has normal structure by (1). 2

Remark 3.3.9. Through simple calculations, we get that 2(1 + t2) ≤ 5t2 − 2t+ 2
if and only if t ∈ [ 23 , 1]. The reason we take t ∈ [ 23 , 1] in (1) is to ensure that there
exists space X satisfying E[t,X ] < 5t2 − 2t + 2 by Proposition 3.1.1. This is also
why we take t ∈ [1, 32 ] in (2).

3.4. BanachMazur distance and stability

In this section, we will use the Banach-Mazur distance to discuss the relation
of the values of E[t,X ] for two isomorphic Banach spaces. This relationship plays
a decisive role in our subsequent discussion of the relationship between E[t,X ] and
E[t,X∗∗].

Theorem 3.4.1. If X and Y are isomorphic Banach spaces, then,

E[t, Y ]

d(X,Y )2
≤ E[t,X ] ≤ d(X,Y )2E[t, Y ], t > 0.

Proof. Let x, y ∈ SX and t > 0. For each ε > 0, there exists an isomorphism T
from X onto Y such that ‖T−1‖‖T ‖ ≤ (1 + ε)d(X,Y ). Set

x =
Tx

‖T ‖
, y =

Ty

‖T ‖
,
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then x, y ∈ BY . Now, according to Proposition 3.1.2 (1), we obtian

‖x+ ty‖2 + ‖tx− y‖2 = ‖T−1(Tx+ tT y)‖2 + ‖T−1(T tx+ Ty)‖2

= ‖T−1(‖T ‖x+ t‖T ‖y)‖2 + ‖T−1(‖T ‖tx+ ‖T ‖y)‖2

= ‖T−1‖2‖T ‖2(‖x+ ty‖2 + ‖tx− y‖2)

≤ (1 + ε)2d(X,Y )2E[t, Y ].

This means that E[t,X ] ≤ (1 + ε)2d(X,Y )2E[t, Y ]. Let ε → 0, we obtain

E[t,X ] ≤ d(X,Y )2E[t, Y ].

The other inequality follows by interchanging X and Y . 2

Corollary 3.4.2. Let X be a Banach space and let X1 = (X, ‖ · ‖1), where ‖ · ‖1 is

an equivalent norm on X satisfying, for a, b > 0,

a‖x‖ ≤ ‖x‖1 ≤ b‖x‖, x ∈ X

Then
a2

b2
E[t,X ] ≤ E[t,X1] ≤

b2

a2
E[t,X ], t > 0.

Proof. This follows from Theorem 3.4.1 and the fact that d(X,X1) ≤
b
a . 2

Finally, we will use Theorem 3.4.1 to show that E[t,X ] = E[t,X∗∗]. To do
this, we need to recall the definition of finite representability. A Banach space X is
finitely representable in a Banach space Y if, for every ε > 0 and for every finite-
dimensional subspace X0 of X , there exists a finite-dimensional subspace Y0 of Y
with dim(X0) = dim(Y0) such that d(X0, Y0) ≤ 1 + ε.

Theorem 3.4.3. Let X and Y be Banach spaces. The following statements hold.

(1) If X is finitely representable in Y , then E[t,X ] ≤ E[t, Y ], t > 0.
(2) E[t,X ] = E[t,X∗∗], t > 0.

Proof. (1) Let t > 0 and X0 be a two-dimensional subspace of X . For any ε > 0,
since X is finitely representable in Y , there exists a two-dimensional subspace Y0 of
Y such that d(X0, Y0) ≤ 1 + ε. Applying Theorem 3.4.1 to the pair of X0 and Y0,
we obtain

E[t,X0] ≤ (1 + ε)E[t, Y0] ≤ (1 + ε)E[t, Y ].

Let ε → 0, we obtain E[t,X0] ≤ E[t, Y ]. Further, by Proposition 3.1.2 (3), we
obtain E[t,X ] ≤ E[t, Y ].

(2) For any Banach spaces X , by the principle of local reflexivity, X∗∗ is always
finitely representable in X . Then, by (1),

E[t,X ] ≥ E[t,X∗∗], t > 0.
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On the other hand, X is isometric to a subspace of X∗∗, therefore,

E[t,X ] ≤ E[t,X∗∗], t > 0.

This completes the proof. 2

4. Skew Von Neumann-Jordan Constant CNJ[X ]

In 1935, Jordan and von Neumann [22] pointed out that for any Banach spaces
X there is an unique smallest positive constant C between one and two with the
property that if x and y are elements of X , not both equal to the zero element, then
the following relation holds:

1

C
≤

‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
≤ C.

In [22], Jordan and von Neumann also demonstrated that C = 1 is a necessary
and sufficient condition for X to be a Hilbert space. This is actually a famous
characterization of Hilbert spaces called the parallelogram law. And then in 1937,
Clarkson [6] gave a precise evaluation of this constant C for the Lebesgue spaces
Lp and lp, for all p ≥ 1. It was these two articles that attracted the attention of
scholars to this constant C and began to study it. Later, scholars always define
the constant C in the following equivalent way, and call this constant C the von
Neumann-Jordan constant, denoted by CNJ(X),

CNJ(X) = sup

{

‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, (x, y) 6= (0, 0)

}

.

After a large number of studies by scholars, it is found that CNJ(X) can not only
be used to characterize Hilbert spaces, but also can be used to characterize uni-
formly non-square spaces (see [28]) and superreflexive spaces (see [20]), and even
has the close relation with uniformly normal structure (see [25]). For more results
on CNJ(X), we recommend [1, 18] to interested readers.

As we mentioned above, the constant CNJ(X) is closely related to the parallel-
ogram law. Note that Lemma 3.3.1 that we used earlier in proving Theorem 3.3.2
is actually a generalization of the parallelogram law. Therefore, we naturally want
to define a new constant based on it. To this end, we need to explain the following
two facts first. The first thing is that, by Lemma 3.3.1 and let t = µ

λ , X is a Hilbert
space if and only if for all x, y ∈ SX there exists t 6= 0 such that

(4.1) ‖x+ ty‖2 + ‖tx− y‖2 ≈ 2(1 + t2),

where ≈ means either ≤ or ≥. The second thing is that, according to the definition
of CNJ(X), CNJ(X) has the following equivalent form:

(4.2) CNJ(X) = sup

{

‖x+ ty‖2 + ‖x− ty‖2

2(1 + t2)
: x, y ∈ SX , 0 ≤ t ≤ 1

}

.
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Therefore, based on (4.1) and (4.2), we consider the following constant

CNJ[X ] = sup

{

‖x+ ty‖2 + ‖tx− y‖2

2(1 + t2)
: x, y ∈ SX , 0 ≤ t ≤ 1

}

,

which can be regard as the skew version of von Neumann-Jordan constant CNJ(X).
Moreover, it is clearly that

CNJ[X ] = sup

{

E[t,X ]

2 (1 + t2)
: 0 ≤ t ≤ 1

}

.

First, the bounds of CNJ[X ] are shown as below.

Proposition 4.1. Let X be a Banach space. Then 1 ≤ CNJ[X ] ≤ 2.

Proof. First, Let x, y ∈ SX such that x = y, we can easily get CNJ[X ] ≥ 1. Second,
for any t ∈ [0, 1] and x, y ∈ SX , we have

‖x+ ty‖2 + ‖tx− y‖2

2(1 + t2)

≤
(1 + t)2 + (1 + t)2

2(1 + t2)
= 1 +

2t

1 + t2

≤1 + sup

{

2t

1 + t2
: 0 ≤ t ≤ 1

}

= 2,

which means CNJ[X ] ≤ 2. 2

From the definition of CNJ[X ] and the results shown in Example 3.1.3, Example
3.1.4 and Example 3.1.5, we can obtain the following results easily by some simple
calculations.

Example 4.2.

(1) Let X be the space R
2 with the norm shown in Example 3.1.3. Then

CNJ[X ] = 3+
√

5
4 .

(2) Let X be the space R
2 with the norm shown in Example 3.1.4. Then

CNJ[X ] = 3+
√

5
4 .

(3) Let X be the space R
2 with the norm shown in Example 3.1.5. Then

CNJ[X ] = 3
2 .

From the Theorem 3.3.2 and Theorem 3.3.4, we know that E[t,X ] can be used
to characterize the Hilbert spaces and uniformly non-square spaces. Moreover, form
the definition of CNJ[X ], one can know that CNJ[X ] is closely related to E[t,X ].
Thus, it is natural to ask whether CNJ[X ] can also be used to characterize the
Hilbert spaces and uniformly non-square spaces. The answer is yes.

Theorem 4.3. Let X be a Banach space. Then X is a Hilbert space if and only if

CNJ[X ] = 1.
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Proof. If CNJ[X ] = 1, then, according to CNJ[X ] = sup
{

E[t,X]
2(1+t2) : 0 ≤ t ≤ 1

}

, we

have
E[t,X ] ≤ 2

(

1 + t2
)

, 0 ≤ t ≤ 1.

Further, form Proposition 3.1.1, we can obtain

E[t,X ] = 2
(

1 + t2
)

, 0 ≤ t ≤ 1,

which implies X is a Hilbert space by Theorem 3.3.2.
On the contrary, if X is a Hilbert space, then according to Theorem 3.3.2 and

CNJ[X ] = sup
{

E[t,X]
2(1+t2) : 0 ≤ t ≤ 1

}

, we can easily get CNJ[X ] = 1. 2

Remark 4.4. The above conclusion also shows that the lower bound of CNJ[X ]
given in Proposition 4.1 is sharp.

Theorem 4.5. Let X be a Banach space. Then the following statements are

equivalent.

(1) CNJ[X ] < 2.
(2) X is uniformly non-square.

Proof. (1)⇒ (2). If X is not uniformly non-square, then, by Theorem 3.3.4, we
obtain

E[t,X ] = 2(1 + t)2, t ∈ [0, 1].

Then, we have

CNJ[X ] = sup

{

E[t,X ]

2 (1 + t2)
: 0 ≤ t ≤ 1

}

= sup

{

(1 + t)2

1 + t2
: 0 ≤ t ≤ 1

}

= 2.

This contradicts CNJ[X ] < 2.
(2) ⇒ (1). Since X is uniformly non-square, then there exists δ > 0 such that,

for any x, y ∈ SX ,

min

{∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

,

∥

∥

∥

∥

x− y

2

∥

∥

∥

∥

}

≤ 1− δ.

Without loss of generality, for any x, y ∈ SX , we always assume that

min

{
∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

,

∥

∥

∥

∥

x− y

2

∥

∥

∥

∥

}

=

∥

∥

∥

∥

x− y

2

∥

∥

∥

∥

.

Now, Let t ∈ [0, 1]. Then, for any x, y ∈ SX , we have

‖tx− y‖ =

∥

∥

∥

∥

2t

(

x− y

2

)

− (1− t) y

∥

∥

∥

∥

≤ 2t

∥

∥

∥

∥

x− y

2

∥

∥

∥

∥

+ (1− t) ‖y‖

≤ 2t(1− δ) + 1− t

= 1 + t− 2tδ.
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Further, for any x, y ∈ SX , we have

‖x+ ty‖2 + ‖tx− y‖2

2(1 + t2)
≤

(1 + t)2 + ‖tx− y‖2

2(1 + t2)

≤ 1 +
‖tx− y‖2

2(1 + t2)

≤ 1 +
(1 + t− 2tδ)2

2(1 + t2)

≤ 1 + sup

{

(1 + t− 2tδ)
2

2(1 + t2)
: 0 ≤ t ≤ 1

}

= 1 +
(2− 2δ)2

4
,

which implies that CNJ[X ] ≤ 1 + (2−2δ)2

4 < 2. 2

Remark 4.6. The above conclusion also shows that the upper bound of CNJ[X ]
given in Proposition 4.1 is sharp.

Finally, we need to point out that since

CNJ[X ] = sup

{

E[t,X ]

2 (1 + t2)
: 0 ≤ t ≤ 1

}

,

we can get the following conclusions easily through Theorem 3.4.1 and Theorem
3.4.3.

Proposition 4.7. Let X and Y be Banach spaces. Then the following statements

hold.

(1) If X and Y are isomorphic Banach spaces, then

CNJ[Y ]

d(X,Y )2
≤ CNJ[X ] ≤ d(X,Y )2CNJ[Y ].

(2) CNJ[X ] = CNJ[X
∗∗].

5. Skew James Constant J [t,X ]

In 1990, in order to simplify the Schäffer’s girth and perimeter of the unit
spheres, Gao and Lau [12] introduced the following constant called James constant

J(X) = sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ SX},

and they proved that J(X) < 2 if and only if X is uniformly non-square. After a
lot of researchs, it is found that James constant has good properties. For example,
it can be used to characterize Hilbert spaces (see [21]), and has a very beautiful
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relationship with CNJ(X), that is, CNJ(X) ≤ J(X) (see [29]). For more results on
J(X) can be found in [5, 18].

In 2007, He and Cui [3] discuss the following constant called Milman’s moduli
which can be regard as a generalization of James constant.

J(t,X) = sup{min{‖x+ ty‖, ‖x− ty‖} : x, y ∈ SX}, t > 0.

Based on the motivation mentioned in the Introduction, we consider the following
constant

J [t,X ] = sup{min{‖x+ ty‖, ‖tx− y‖} : x, y ∈ SX}, t > 0,

which can be regard as the skew version of J(t,X).
The value of J [t,X ] for Hilbert space is shown below.

Proposition 5.1. If X is a Hilbert space, then J [t,X ] =
√
t2 + 1 holds for all

t > 0.

Proof. Since X be a Hilbert space, then for any x, y ∈ SX and any t > 0, we have

‖x+ ty‖2 + ‖tx− y‖2

=‖x‖2 + t2‖y‖2 + t2‖x‖2 + ‖y‖2

=2t2 + 2.

Thus, for any x, y ∈ SX and any t > 0, we have

min{‖x+ ty‖2, ‖tx− y‖2} ≤
‖x+ ty‖2 + ‖tx− y‖2

2
= t2 + 1,

which means
J [t,X ] ≤

√

t2 + 1, t > 0.

On the other hand, it is obvious that there exist x0, y0 ∈ SX such that x0 ⊥ y0.
Thus, for any t > 0, we obtain

J [t,X ] ≥ min{‖x0 + ty0‖, ‖tx0 − y0‖}

= min{
√

‖x0‖2 + 2t〈x0, y0〉+ t2‖y0‖2,
√

t2‖x0‖2 − 2t〈x0, y0〉+ ‖y0‖2}

=
√

t2 + 1.

This completes the proof. 2

Next, we will use Hahn-Banach theorem to establish the relation between J [t,X ]
and J [t,X∗].

Proposition 5.2. Let X be a Banach space. Then

2J [t,X ]− (1 + t) ≤ J [t,X∗] ≤
1

2
(J [t,X ] + 1 + t), t > 0.
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Proof. Let t > 0. First, for any ε > 0, there exist x, y ∈ SX such that

min{‖x+ ty‖, ‖tx− y‖} ≥ J [t,X ]− ε.

In addition, according to Hahn-Banach theorem, there exist f, g ∈ SX∗ such that

f(x+ ty) = ‖x+ ty‖, g(tx− y) = ‖tx− y‖.

Then, we have

J [t,X∗] ≥ min{‖f + tg‖, ‖tf − g‖}

= ‖f + tg‖+ ‖tf − g‖ −max{‖f + tg‖, ‖tf − g‖}

≥ ‖f + tg‖+ ‖tf − g‖ − (1 + t)

≥ (f + tg)(x) + (tf − g)(y)− (1 + t)

= f(x+ ty) + g(tx− y)− (1 + t)

= ‖x+ ty‖+ ‖tx− y‖ − (1 + t)

≥ 2min{‖x+ ty‖, ‖tx− y‖} − (1 + t)

≥ 2(J [t,X ]− ε)− (1 + t).

Let ε → 0, we have
J [t,X∗] ≥ 2J [t,X ]− (1 + t).

Second, let f, g ∈ SX∗ , then for any ε > 0, there exist x, y ∈ SX such that

(f + tg)(x) > ‖f + tg‖ − ε, (tf − g)(y) > ‖tf − g‖ − ε.

Thus, for any f, g ∈ SX∗ , we have

min{‖f + tg‖, ‖tf − g‖} ≤
1

2
(‖f + tg‖+ ‖tf − g‖)

<
1

2
((f + tg)(x) + (tf − g)(y) + 2ε)

=
1

2
(f(x+ ty) + g(tx− y) + 2ε)

≤
1

2
(‖x+ ty‖+ ‖tx− y‖+ 2ε)

≤
1

2
(min{‖x+ ty‖, ‖tx− y‖}+ 1 + t+ 2ε)

≤
1

2
(J [t,X ] + 1 + t+ 2ε),

which shows that

J [t,X∗] ≤
1

2
(J [t,X ] + 1 + t+ 2ε), ε > 0.
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Let ε → 0, we have

J [t,X∗] ≤
1

2
(J [t,X ] + 1 + t).

2

Next, we will establish the relation between J(X) and J [t,X ], which will help
us to give the relation between J [t,X ] and uniformly non-square spaces.

Proposition 5.3. Let X be a Banach space. Then

max{1, t}J(X)− |1− t| ≤ J [t,X ] ≤ min{1, t}J(X) + |1− t|.

Proof. For x, y ∈ SX and t > 0, we have

min{‖x+ y‖, ‖x− y‖} = min{‖x+ ty + (1− t)y‖, ‖tx− y + (1− t)x‖}

≤ min{‖x+ ty‖+ |1− t|, ‖tx− y‖+ |1− t|}

= min{‖x+ ty‖, ‖tx− y‖}+ |1− t|

≤ J [t,X ] + |1− t|,

and

tmin{‖x+ y‖, ‖x− y‖} = min{‖tx+ ty‖, ‖tx− ty‖}

≤ min{‖x+ ty‖+ |1− t|, ‖tx− y‖+ |1− t|}

= min{‖x+ ty‖, ‖tx− y‖}+ |1− t|

≤ J [t,X ] + |1− t|.

This shows that max{1, t}J(X)− |1− t| ≤ J [t,X ].
In addition, for x, y ∈ SX and t > 0, we also have

min{‖x+ ty‖, ‖tx− y‖} = min{‖x+ y + (t− 1)y‖, ‖x− y + (t− 1)x‖}

≤ min{‖x+ y‖+ |1 − t|, ‖x− y‖+ |1− t|}

= min{‖x+ y‖, ‖x− y‖}+ |1− t|

≤ J(X) + |1− t|,

and

min{‖x+ ty‖, ‖tx− y‖|} = min{‖tx+ ty + (1− t)x‖, ‖tx− ty + (t− 1)y‖}

≤ min{‖tx+ ty‖+ |1− t|, ‖tx− ty‖+ |1− t|}

= tmin{‖x+ y‖, ‖x− y‖}+ |1− t|

≤ tJ(X) + |1− t|.

This shows that J [t,X ] ≤ min{1, t}J(X) + |1− t|. 2



222 Y. Fu, Q. Liu, Z. Yang and Y. Li

Now, from Proposition 5.3 and the fact that X is uniformly non-square if and
only if J(X) < 2, we can obtain following result easily.

Corollary 5.4. Let X be a Banach space. Then the following statements are

equivalent.

(1) X is uniformly non-square.

(2) J [t,X ] < t+ 1 holds for all t > 0.
(3) J [t,X ] < t+ 1 holds for some t > 0.
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