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Abstract. In this article we look at the property of a 2 by 2 full matrix ring over the ring

of integers, of being weakly right IQNN. This generalisation of the property of being right

IQNN arises from products of idempotents and nilpotents. We shown that it is, indeed,

a proper generalization of right IQNN. We consider the property of beign weakly right

IQNN in relation to several kinds of factorizations of a free algebra in two indeterminates

over the ring of integers modulo 2.

1. Prerequisites

Throughout this article every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. I(R) is used to denote the set of all idempotents
of R, and I(R)′ = I(R)\{0, 1}. We use N(R), and N∗(R) to denote the set of
all nilpotent elements, and upper nilradical (i.e., the sum of all nil ideals) of R,
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respectively. It is evident that N∗(R) ⊆ N(R). A nilpotent element is also called a
nilpotent for simplicity. For n ≥ 2, denote the full and upper triangular matrix rings
over R by Matn(R) and Tn(R) respectively. Let Z, Zn, and Q denote the ring of
integers, ring of integers modulo n, and the field of rational numbers, respectively.
For m,n ∈ Z, gcd(m,n) is the greatest common divisor of m,n. The characteristic
of R is denoted by ch(R).

Following Kwak et al. [5, Definition 1.2], a ring R is called right idempotent-

quasi-normalizing on nilpotents, abbreviated to right IQNN, provided that I(R)′ is
empty, or else for every pair (e, a) ∈ I(R)′×N(R) there exists (b, f) ∈ N(R)×I(R)′

such that ea = bf . A left IQNN ring is defined symmetrically. A ring is IQNN if
it is both right and left IQNN. Abelian rings, in which every idempotent is central,
are clearly IQNN but the converse is not true, as is shown in [5]. The following
facts have essential role in this article.

Define the sets

E1 = ( 1 0
0 0 ) E2 = ( 0 0

0 1 ) E3 = ( 1 t
0 0 )

E4 = ( 1 0
u 0 ) E5 = ( 0 t

0 1 ) E6 = ( 0 0
u 1 ) t 6= 0, u 6= 0

B1 = ( 0 0
0 0 ) B2 = ( 0 t

0 0 ) B3 = ( 0 0
u 0 )

where our notation here means, for example, that E3 = {( 1 t
0 0 ) | t 6= 0}, and define

E7 =
(

s t
u 1−s

)

s /∈ {0, 1} and s(1− s) = tu

B4 =
(

a b
c −a

)

a 6= 0, b 6= 0, c 6= 0, and a2 = −bc.

The following is from [5, Lemma 2.3(2, 3)].

Lemma 1.1. If F is a commutative domain and R = Mat2(F ), then

I(R)′ = E1 ∪ E2 ∪ · · · ∪ E7 and N(R) = B1 ∪ · · · ∪B4.

The following is from [1, Lemma 2.1(2)].

Lemma 1.2. Let F be a commutative domain, R = Mat2(F ), and K be the quotient

field of F . In Mat2(K), we have

(i) E7B4 =

(

sa+ tc b
a
(sa+ tc)

u
s
(sa+ tc) bu

as
(sa+ tc)

)

, B4E7 =

(

as+ bu t
s
(as+ bu)

c
a
(as+ bu) ct

as
(as+ bu)

)

;

(ii) E4B4 =

(

a b
ua ub

)

=

(

a −a
c
a

ua −ua
c
a

)

, E5B4 =

(

tc −ta
c −a

)

=

(

− ta
b
a −ta

−a
b
a −a

)

;

(iii) B4E3 =

(

a ta
c tc

)

=

(

a ta
−a

b
a − ta

b
a

)

, B4E6 =

(

ub b
−ua −a

)

=

(

−ua
c
a −a

c
a

−ua −a

)

,
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from which it follows that if

M ∈ E7B4 ∪B4E7 ∪ E4B4 ∪ E5B4 ∪B4E3 ∪B4E6,

we have that if M is nonzero, then every entry of M is nonzero.

In the following, we see a practical application of Lemma 1.2 that may provide
useful information to the studies related to products of idempotents and nilpotents.

Remark 1.3. Let F = Z and R = Mat2(F ).

(1) Let p, q be any nonzero integers. Let C =
( 0 p
0 q

)

∈ R be such that C = EA
for some E ∈ I(R)′ and A ∈ N(R). Then, by Lemma 1.1, we have the cases that
A = B2 = ( 0 v

0 0 ) ∈ N(R), and

E = E7 =

(

p′ m
q′ 1− p′

)

∈ I(R)′, where p′(1− p′) = q′m 6= 0

or

E = E4 =

(

1 0
u 0

)

∈ I(R)′, where u 6= 0.

That is, EA is
(

0 p′v

0 q′v

)

with p = p′v and q = q′v, or ( 0 v
0 uv ) with p = v and q = uv.

We will find B ∈ N(R) and E′ ∈ I(R)′ such that the left ideal RBE′ of R contains
EA.

Case 1. Suppose that p and q do not divide each other, and gcd(p′, q′) 6= 1.
Evidently |p′|, |q′| ≥ 2. Letting p′ = p′′v1 and q′ = q′′v1 with gcd(p′, q′) = v1 (then
gcd(p′′, q′′) = 1), we also have |p′′|, |q′′| ≥ 2 since p and q do not divide each other.

Let p′′ = pu1

1 · · · p
uf

f and q′′ = qv11 · · · q
vg
g , with ui, vj ≥ 1, we the prime number

decompositions of p′′ and q′′ respectively. Since p′′(1−p′) = q′′m and gcd(p′′, q′′) =
1, q′′ must divide 1 − p′. Letting 1 − p′ = q′′m′, we have p′ + q′′m′ = 1 and this
implies gcd(p′, q′′) = 1 (hence gcd(v1, q

′′) = 1).

Since q′′ divides 1− p′ as above, we have that − 1−p′

q′′
∈ Z and

BE′ =

(

−q′′p′ p′2

−q′′2 q′′p′

)

(

0 − 1−p′

q′′

0 1

)

=

(

0 p′

0 q′′

)

,

noting B =
(

−q′′p′ p′2

−q′′2 q′′p′

)

∈ N(R) and E′ =
(

0 −
1−p′

q′′

0 1

)

∈ I(R)′. From this, we also

have

(

v 0
0 v

)

BE′ =

(

v 0
0 v

)(

−q′′p′ p′2

−q′′2 q′′p′

)

(

0 − 1−p′

q′′

0 1

)

=

(

0 p′v
0 q′′v

)

=

(

0 p
0 q′′v

)

and

(

vv1 0
0 vv1

)

BE′ =
(

vv1 0
0 vv1

)

(

−q′′p′ p′2

−q′′2 q′′p′

)(

0 −
1−p′

q′′

0 1

)

=
(

0 p′vv1
0 q′′vv1

)

=
( 0 pv1
0 q

)

,
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noting ( v 0
0 v )

(

−q′′p′ p′2

−q′′2 q′′p′

)

,
(

vv1 0
0 vv1

)

(

−q′′p′ p′2

−q′′2 q′′p′

)

∈ N(R).

Thus RBE′ contains the matrices
(

1 0
0 0

)(

0 p
0 q′′v

)

=

(

0 p
0 0

)

and

(

0 0
0 1

)(

0 pv1
0 q

)

=

(

0 0
0 q

)

,

entailing EA ∈ RBE′.

Case 2. The results in this case are obtained by the argument of [1, Lemma 2.1(3)].

(i) Suppose that p divides q. Then BE′ =
(

−q p

−
q2

p
q

)

( 0 0
0 1 ) =

( 0 p
0 q

)

= EA, where

B =
(

−q p

−
q2

p
q

)

∈ N(R) and E′ = ( 0 0
0 1 ) ∈ I(R)′.

(ii) Suppose that q divides p. Then
(

p −
p2

q

q −p

)(

0 1+ p
q

0 1

)

=
( 0 p
0 q

)

= EA, where

B =
(

p −
p2

q

q −p

)

∈ N(R) and E′ =
(

0 1+ p
q

0 1

)

∈ I(R)′.

(iii) Suppose that p and q do not divide each other and gcd(p, q) = 1. Then we

get BE′ =
(

−qp p2

−q2 qp

)(

0 −
1−p
q

0 1

)

=
( 0 p
0 q

)

= EA, where B =
(

−qp p2

−q2 qp

)

∈ N(R) and

E′ =
(

0 −
1−p
q

0 1

)

∈ I(R)′.

Thus there exist B ∈ N(R) and E′ ∈ I(R)′ such that EA ∈ RBE′ in any case
of (i), (ii) and (iii).

(2) Let p, q be any nonzero integers. Let C =
(

q 0
p 0

)

∈ R be such that C = EA
for some E ∈ I(R)′ and A ∈ N(R). Then, by Lemma 1.1, we have the cases that
0 6= A = ( 0 0

s 0 ) ∈ N(R), and

E = E7 =

(

1− p′ q′

m p′

)

∈ I(R)′ (where p′(1− p′) = q′m 6= 0)

or

E = E5 =

(

0 t
0 1

)

∈ I(R)′ (where t 6= 0);

that is, EA =
(

q′s 0
p′s 0

)

with p = p′s and q = q′s, or EA = ( st 0
s 0 ) with p = s and

q = st.

We will find B ∈ N(R) and E′ ∈ I(R)′ such that the left ideal RBE′ of R
contains EA.

Case 1. Suppose that p and q do not divide each other, and gcd(p′, q′) 6= 1.

By applying the argument and using the notation of (1), we have

BE′ =

(

q′′p′ −q′′2

p′2 −q′′p′

)

(

1 0

− 1−p′

q′′
0

)

=

(

q′′ 0
p′ 0

)

,

noting B =
(

q′′p′
−q′′2

p′2
−q′′p′

)

∈ N(R) and E′ =
(

1 0

−
1−p′

q′′
0

)

∈ I(R)′. From this, we also

have
(

v 0
0 v

)(

q′′p′ −q′′2

p′2 −q′′p′

)

(

1 0

− 1−p′

q′′
0

)

=

(

q′′v 0
p′v 0

)

=

(

q′′v 0
p 0

)
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and
(

vv1 0
0 vv1

)(

q′′p′ −q′′2

p′2 −q′′p′

)

(

1 0

− 1−p′

q′′
0

)

=

(

q′′vv1 0
p′vv1 0

)

=

(

q 0
pv1 0

)

,

noting ( v 0
0 v )

(

q′′p′
−q′′2

p′2
−q′′p′

)

,
(

vv1 0
0 vv1

)

(

q′′p′
−q′′2

p′2
−q′′p′

)

∈ N(R).

Thus RBE′ contains the matrices
(

1 0
0 0

)(

q 0
pv1 0

)

=

(

q 0
0 0

)

and

(

0 0
0 1

)(

q′′v 0
p 0

)

=

(

0 0
p 0

)

,

entailing EA ∈ RBE′.

Case 2. The results in this case are obtained by the argument of [1, Lemma 2.1(3)].

(i) Suppose that p divides q. Then BE′ =
(

q −
q2

p

p −q

)

( 1 0
0 0 ) =

(

q 0
p 0

)

= EA, where

B =
(

q −
q2

p

p −q

)

∈ N(R) and E′ = ( 1 0
0 0 ) ∈ I(R)′.

(ii) Suppose that q divides p. Then BE′ =
(

−p q

−
p2

q
p

)(

1 0
1+ p

q
0

)

=
(

q 0
p 0

)

= EA,

where B =
(

−p q

−
p2

q
p

)

∈ N(R) and E′ =
(

1 0
1+ p

q
0

)

∈ I(R)′.

(iii) Suppose that p and q do not divide each other and gcd(p, q) = 1. Then we

get BE′ =
(

qp −q2

p2
−qp

)(

1 0
−

1−p
q

0

)

=
(

q 0
p 0

)

= EA, where B =
(

qp −q2

p2
−qp

)

∈ N(R) and

E′ =
(

1 0
−

1−p
q

0

)

∈ I(R)′.

Thus there exist B ∈ N(R) and E′ ∈ I(R)′ such that EA ∈ RBE′ in any case
of (i), (ii) and (iii).

(3) Let p, q be any nonzero integers. Let C = ( p q
0 0 ) ∈ R be such that C = EA

for some E ∈ I(R)′ and A ∈ N(R). Then we have the cases that E is E1 = ( 1 0
0 0 ) ∈

I(R)′ or E3 = ( 1 t
0 0 ) ∈ I(R)′, and A = B4 =

(

a b
c −a

)

∈ N(R); that is, EA is ( a b
0 0 )

with p = a, q = b, or
(

a+tc b−ta
0 0

)

with p = a+ tc, q = b− ta.

We will find B ∈ N(R) and E′ ∈ I(R)′ such that the right ideal BE′R of R
contains EA.

Case 1. Suppose that q divides p.

We have
(

0 q
0 0

)(

0 0
p

q
1

)

=

(

p q
0 0

)

= EA,

noting B =
(

0 q
0 0

)

∈ N(R) and E′ =
(

0 0
p
q

1

)

∈ I(R)′.

Based on Case 1, we can assume that |q| ≥ 2 in the cases below.

Case 2. Suppose that p divides q.

We have
(

0 1
0 0

)

(

1− q q(1−q)
p

p q

)

=

(

p q
0 0

)

= EA,
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noting B = ( 0 1
0 0 ) ∈ N(R) and E′ =

(

1−q
q(1−q)

p
p q

)

∈ I(R)′.

Case 3. Suppose that p and q do not divide each other.

Let p = p′k and q = q′k with gcd(p, q) = k. Take B = ( 0 k
0 0 ) ∈ N(R) and

E′ = ( 0 0
0 1 ) ∈ I(R)′. Then BE′R contains BE′ = ( 0 k

0 0 ), (
0 k
0 0 ) (

0 0
1 1 ) = ( k k

0 0 ) and,
consequently, contains ( k 0

0 0 ).

Thus BE′R contains ( k 0
0 0 )

(

p′ 0
0 0

)

=
(

p 0
0 0

)

and ( 0 k
0 0 )

(

0 0
0 q′
)

=
(

0 q
0 0

)

, and hence
contains ( p q

0 0 ).

(4) Let p, q be any nonzero integers. Let C =
(

0 0
q p

)

∈ R be such that C = EA
for some E ∈ I(R)′ and A ∈ N(R). Then we have the cases that E is E2 = ( 0 0

0 1 ) ∈
I(R)′ or E6 = ( 0 0

u 1 ) ∈ I(R)′, and A = B4 =
(

a b
c −a

)

∈ N(R); that is, EA is
(

0 0
c −a

)

with q = c, p = −a, or ( 0 0
0 0 ) with q = ua+ c, q = ub− a.

We will find B ∈ N(R) and E′ ∈ I(R)′ such that the right ideal BE′R of R
contains EA.

Case 1. Suppose that q divides p.

We have
(

0 0
q 0

)(

1 p

q

0 0

)

=

(

0 0
q p

)

= EA,

noting B =
(

0 0
q 0

)

∈ N(R) and E′ =
(

1 p
q

0 0

)

∈ I(R)′.

Based on Case 1, we assume |q| ≥ 2 in the cases below.

Case 2. Suppose that p divides q.

We have
(

0 0
1 0

)

(

q p
q(1−q)

p
1− q

)

=

(

0 0
q p

)

= EA,

noting B = ( 0 0
1 0 ) ∈ N(R) and E′ =

(

q p
q(1−q)

p
1−q

)

∈ I(R)′.

Case 3. Suppose that p and q do not divide each other.

Let p = p′k and q = q′k with gcd(p, q) = k. Take B = ( 0 0
k 0 ) ∈ N(R) and

E′ = ( 1 0
0 0 ) ∈ I(R)′. Then BE′R contains BE′ = ( 0 0

k 0 ), (
0 0
k 0 ) (

1 1
0 0 ) = ( 0 0

k k ) and,
consequently, contains ( 0 0

0 k ).

Thus BE′R contains ( 0 0
k 0 )

(

q′ 0
0 0

)

=
(

0 0
q 0

)

and ( 0 0
0 k )

( 0 0
0 p′

)

=
(

0 0
0 p

)

, and hence

contains
(

0 0
q p

)

.

(5) Let p be any nonzero integer.

Let C =
(

p 0
0 0

)

∈ R be such that C = EA for some E ∈ I(R)′ and A ∈ N(R).
Then we have the case that E = E3 = ( 1 t

0 0 ) ∈ I(R)′ and A = B3 = ( 0 0
c 0 ) ∈ N(R);

that is, EA = ( ct 0
0 0 ) with p = ct. Take B =

(

0 p
0 0

)

∈ N(R) and E′ = ( 0 0
0 1 ) ∈ I(R)′.

Then BE′R contains
(

0 p
0 0

)

,
(

0 p
0 0

)

( 0 0
1 1 ) = ( p p

0 0 ) and, consequently, contains EA =
(

p 0
0 0

)

.

Let C =
(

0 0
0 p

)

∈ R be such that C = EA for some E ∈ I(R)′ and A ∈ N(R).
Then we have the case that E = E6 = ( 0 0

u 1 ) ∈ I(R)′ and A = B2 = ( 0 b
0 0 ) ∈ N(R);
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that is, EA = ( 0 0
0 bu ) with p = bu. Take B =

(

0 0
p 0

)

∈ N(R) and E′ = ( 1 0
0 0 ) ∈ I(R)′.

Then BE′R contains
(

0 0
p 0

)

,
(

0 0
p 0

)

( 1 1
0 0 ) =

(

0 0
p p

)

and, consequently, contains EA =
(

0 0
0 p

)

.

Let C =
(

0 p
0 0

)

∈ R be such that C = EA for some E ∈ I(R)′ and A ∈ N(R).

Then we have the case that E = E1 = ( 1 0
0 0 ) ∈ I(R)′ and A = B2 =

(

0 p
0 0

)

∈ N(R).

Take B =
(

0 p
0 0

)

∈ N(R) and E′ = E2 = ( 0 0
0 1 ) ∈ I(R)′. Then BE′R contains

EA =
(

0 p
0 0

)

.

Let C =
(

0 0
p 0

)

∈ R be such that C = EA for some E ∈ I(R)′ and A ∈ N(R).

Then we have the case that E = E2 = ( 0 0
0 1 ) ∈ I(R)′ and A = B3 =

(

0 0
p 0

)

∈ N(R).

Take B =
(

0 0
p 0

)

∈ N(R) and E′ = E1 = ( 1 0
0 0 ) ∈ I(R)′. Then BE′R contains

EA =
(

0 0
p 0

)

( 1 0
0 0 ) =

(

0 0
p 0

)

.

(6) Let p, q, r, s be nonzero integers, and let C = ( p q
r s ) ∈ R be such that

C = EA for some E ∈ I(R)′ and A ∈ N(R). Then, by Lemma 1.1, BE′ must be
one of B4E3, B4E6, or B4E7.

By (1) and (2), there exist Ci ∈ N(R) and Fi ∈ I(R)′ such that
(

0 q
0 s

)

∈ RC1F1

and
(

p 0
r 0

)

∈ RC2F2, from which we obtain C ∈ RC1F1 +RC2F2.

By (3) and (4), there exist C′

i ∈ N(R) and F ′

i ∈ I(R)′ such that ( p q
0 0 ) ∈ C′

1F
′

1R
and ( 0 0

r s ) ∈ C′

2F
′

2R, from which we obtain C ∈ C′

1F
′

1R+ C′

2F
′

2R.

Similar arguments are available to the cases of ( p q
r 0 ), (

p q
0 s ), (

p 0
r s ), (

0 q
r s ),

(

p 0
0 s

)

and
(

0 q
r 0

)

.

Mat2(Z) is shown to be not right IQNN by [1, Theorem 2.3(1)]. In the next
section, we introduce a closely related property that Mat2(Z) satisfies, based on
Remark 1.3.

2. Weakly Right IQNN Rings

Motivated by the arguments of Remark 1.3., we consider the following new ring
property as a generalization of right IQNN ring.

Definition 2.1. A ring R is said to be weakly right IQNN provided that I(R)′ is
empty, or else every pair (e, a) ∈ I(R)′ ×N(R) satisfies one of the following:

(i) There exist b ∈ N(R) and f ∈ I(R)′ such that ea ∈ bfR;

(ii) There exist bi ∈ N(R) and fi ∈ I(R)′ (i = 1, 2) such that ea ∈ b1f1R +
b2f2R.

R is called weakly left IQNN provided that I(R)′ is empty, or else every pair
(e, a) ∈ I(R)′ ×N(R) satisfies one of the following:

(i) There exist b′ ∈ N(R) and f ′ ∈ I(R)′ such that ae ∈ Rf ′b′;

(ii) There exist b′i ∈ N(R) and f ′

i ∈ I(R)′ (i = 1, 2) such that ae ∈ Rf ′

1b
′

1 +
Rf ′

2b
′

2.

A ring is weakly IQNN if it is both weakly right IQNN and weakly left IQNN.
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Right IQNN rings are clearly weakly right IQNN, but not conversely as we see
in the arguments below.

Theorem 2.2. Mat2(A) is weakly IQNN over any ring A.

Proof. Let R = Mat1(A). We apply the argument of Remark 1.3. Let 0 6= M =
( p q
r s ) ∈ R. Take

E1 =

(

0 0
0 1

)

, E2 =

(

1 0
0 0

)

∈ I(R)′

and

B1 =

(

0 1
0 0

)

, B2 =

(

0 0
1 0

)

∈ N(R).

Then we have

M = B1E1

(

0 0
p q

)

+B2E2

(

r s
0 0

)

∈ B1E1R+B2E2R.

Thus R is weakly right IQNN. The proof for the case of weakly left IQNN can be
done symmetrically. 2

Mat2(Z) is not right IQNN as mentioned above, and can be shown to be not
left IQNN by a symmetrical method of the proof of [1, Theorem 2.3(1)]. Thus the
concept of weakly right (resp., left) IQNN is a proper generalization of right (resp.,
left) IQNN.

In the following, we see another kind of weakly right IQNN rings but not right
IQNN.

Example 2.3. LetK = Z2 and A = K〈a, b〉 be the free algebra with noncommuting
indeterminates a, b over K.

(1) We use the ring of the ring of [4, Example 2.3(2)]. Let I be the ideal of A
generated by a2 − a, b2, ab and set R = A/I and identify the elements in A with
their images in R1 for simplicity. Then a2 = a and ab = 0 = b2.

By applying the arguments of [4, Example 2.3(1)] and [5, Example 2.6], we have
the following:

(i) every element r ∈ R is of the form r = α0 + α1a + α2b + α3ba, where
α0, α1, α2, α3 ∈ K;

(ii) I(R)′ = {1 + a+ γba, a+ γ′ba | γ, γ′ ∈ K} and N(R) = {αba+ βb | α, β ∈
K}, that is an ideal of R (i.e., N(R) = N∗(R));

(iii) S1 = {en | e ∈ I(R)′, n ∈ N(R)} = N(R) and S2 = {n′e′ | n′ ∈ N(R), e′ ∈
I(R)′} = {b+ ba, ηba | δ, η ∈ K}. So S1 ) S2.

Since S1 ) S2, R is (weakly) left IQNN. Next consider e = 1 + a ∈ I(R)′ and
b ∈ N(R). Then eb = b. Since b /∈ S2, R is not right IQNN. But

b = (b+ ba) + ba = (b+ ba)(1 + a) + (ba)a ∈ c1e1R + c2e2R,
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where e1 = 1+a, e2 = a ∈ I(R)′ and c1 = b+ba, c2 = ba ∈ N(R). Thus R is weakly
right IQNN.

(2) Let J be the ideal of A generated by a2 − a, b2, ba. and set R′ = A/J . Then
R′ is the opposite ring of R of (1). Then a similar argument shows that R′ is weakly
IQNN but not left IQNN.

(3) Let I ′ be the ideal of A generated by a2 − a, b2, ab − b and set R = A/I ′

and identify the elements in A with their images in R for simplicity. Then a2 = a,
ab = b, and b2 = 0 in R. From this relation we obtain the following:

(i) Every element r ∈ R is of the form r = α0+α1a+α2b+α3ba, where αi ∈ K;

(ii) I(R)′ = {1 + a+ γb+ γba, a+ γ′b+ γ′ba | γ, γ′ ∈ K} andN(R) = {αb + α′

ba | α, α′ ∈ K}, that is an ideal of R;

(iii) S1 = {en | e ∈ I(R)′, n ∈ N(R)} = N(R) and S2 = {n′e′ | n′ ∈ N(R), e′ ∈
I(R)′} = {αba, b+ ba}. So S1 ) S2.

Since S1 ) S2, R is (weakly) left IQNN. Next consider e = a ∈ I(R)′ and
b ∈ N(R). Then eb = ab = b. But b /∈ S2 and so R is not right IQNN. But

b = (b+ ba) + ba = (b+ ba)(1 + a) + (ba)a ∈ c1e1R+ c2e2R,

where e1 = 1+a, e2 = a ∈ I(R)′ and c1 = b+ba, c2 = ba ∈ N(R). Thus R is weakly
right IQNN.

(4) Let J ′ be the ideal of A generated by a2 − a, b2, ba− b. and set R′ = A/J ′.
Then R′ is the opposite ring of R of (3). Then a similar argument shows that R′ is
weakly IQNN but not left IQNN.

The non-Abelian rings of Example 2.3 are all weakly IQNN. Next we provide a
method by which one can construct non-Abelian rings that are neither weakly right
nor weakly left IQNN.

Example 2.4. We use the ring of [3, Example 1.2(2)]. Let K = Z2 and A = K〈a, b〉
be the free algebra with noncommuting indeterminates a, b over K. Let I be the
ideal of A generated by a2−a, b2 and set R = A/I. Identify the elements in A with
their images in R for simplicity. Then a2 = a and b2 = 0. By help of the argument
of [3, Example 1.2(2)], we can express r ∈ R and c ∈ N(R) by

r = k0 + k1a+ k2b+ af1a+ af2b+ bf3a+ bf4b and c = kb+ bfb

where k, ki ∈ K and f, fj ∈ R for all j.

Let e = a ∈ I(R)′ and c = b ∈ N(R). Assume that ec = ab = c′e′r for some c′ =
kb+ bfb ∈ N(R), e′ ∈ I(R)′ and r ∈ R. Since ab 6= 0, c′ = kb+ bfb = b(k+ fb) 6= 0
and this yields

ab = b(k + fb)e′r and 0 6= bab = bb(k + fb)e′r = 0,

a contradiction. Next assume that ec = ab = c1e1r1 + c2e2r2 for some 0 6= ci =
kib+ bfib ∈ N(R), ei ∈ I(R)′ and ri ∈ R (i = 1, 2). This yields

ab = b((k1 + f1b)e1r1 + (k2 + f2b)e2r2)
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and

0 6= bab = bb((k1 + f1b)e1r1 + (k2 + f2b)e2r2) = 0,

a contradiction. Thus R is not weakly right IQNN. It is also shown by a symmetrical
argument that R is not weakly left IQNN.

Next we consider two kinds of rings R over which T2(R) may be weakly right
IQNN.

Proposition 2.5. Let R be a ring.

(1) If N(R) = N∗(R) then T2(R) is weakly right IQNN.

(2) If I(R) = {0, 1} then T2(R) is weakly right IQNN.

Proof. Write T = T2(R). Note that

I(T )′ =

{(

e g
0 f

)

∈ T | e, f ∈ I(R), (e, f) /∈ {(0, 0), (1, 1)}, eg + gf = g

}

and

N(T ) =

{(

a c
0 b

)

∈ T | a, b ∈ N(R) and c ∈ R

}

.

(1) Assume N(R) = N∗(R). Let E =
( e g
0 f

)

∈ I(T )′ and A = ( a c
0 b ) ∈ N(T ).

Then EA =
(

ea ec+gb
0 fb

)

∈ N(T ), i.e., ea, fb ∈ N(R), by assumption. Take E1 =

( 1 0
0 0 ), E2 = ( 0 0

0 1 ) and B1 = ( ea 0
0 0 ), B2 =

(

0 ec+gb
0 fb

)

. Then Ei ∈ I(T )′ and Bi ∈

N(T ) such that EA = B1E1 + B2E2 ∈ B1E1T + B2E2T . Thus T is weakly right
IQNN.

(2) Assume I(R) = {0, 1}. Then

I(T )′ =

{(

e g
0 f

)

∈ T | (e, f) ∈ {(1, 0), (0, 1)}, g ∈ R

}

.

Let E =
( e g
0 f

)

∈ I(T )′ and A = ( a c
0 b ) ∈ N(T ). Then EA =

(

ea ec+gb
0 fb

)

∈ N(T )

since e, f ∈ {0, 1}; in fact, ea is zero or a, and fb is also zero or b. Take E1 = ( 1 0
0 0 ),

E2 = ( 0 0
0 1 ) and B1 = ( ea 0

0 0 ), B2 =
(

0 ec+gb
0 fb

)

. Then Ei ∈ I(T )′ and Bi ∈ N(T ).

Since EA = B1E1 +B2E2 ∈ B1E1T + B2E2T . Thus T is weakly right IQNN. 2

In the following argument we see a condition under which the weakly IQNN
property is right-left symmetric. Let R be a ring. An involution on a ring R is
a function ∗ : R → R which satisfies the properties that (x + y)∗ = x∗ + y∗,
(xy)∗ = y∗x∗, 1∗ = 1, and (x∗)∗ = x for all x, y ∈ R. It is easily checked that
0∗ = 0, a ∈ N(R) implies a∗ ∈ N(R), and e∗ ∈ I(R)′ for e ∈ I(R)′. We use these
facts without referring.
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Proposition 2.6. Let R be a ring with an involution ∗. Then R is weakly right

IQNN if and only if R is weakly left IQNN.

Proof. Assume that I(R)′ is nonempty. Suppose that R is weakly right IQNN. Let
a ∈ N(R) and e ∈ I(R)′. Then a∗ ∈ N(R) and e∗ ∈ I(R)′. Since R is weakly right
IQNN, we have the following four cases. We proceed our argument on a case-by-case
computation.

(i) There exist b ∈ N(R), f ∈ I(R)′ and s ∈ R such that e∗a∗ = bfs. This
implies that

ae = ((ae)∗)∗ = (e∗a∗)∗ = (bfs)∗ = s∗f∗b∗ ∈ Rf∗b∗.

(ii) There exist bi ∈ N(R), fi ∈ I(R)′ and si ∈ R (i = 1, 2) such that e∗a∗ =
b1f1s1 + b2f2s2. This implies that

ae = ((ae)∗)∗ = (e∗a∗)∗ = (b1f1s1 + b2f2s2)
∗ = s∗1f

∗

1 b
∗

1 + s∗2f
∗

2 b
∗

2 ∈ Rf∗

1 b
∗

1 +Rf∗

2 b
∗

2.

Since b∗, b∗i ∈ N(R) and f∗, f∗

i ∈ I(R)′, we now conclude that R is weakly left
IQNN by the results (i) and (ii).

Conversely suppose that R is weakly left IQNN. Then we have the following
cases.

(iii) There exist b′ ∈ N(R), f ′ ∈ I(R)′ and r ∈ R such that a∗e∗ = rf ′b′. This
implies that

ea = ((ea)∗)∗ = (a∗e∗)∗ = (rf ′b′)∗ = b′
∗

f ′∗r∗ ∈ b′
∗

f ′∗R.

(iv) There exist b′i ∈ N(R), f ′

i ∈ I(R)′ and ri ∈ R (i = 1, 2) such that a∗e∗ =
r1f

′

1b
′

1 + r2f
′

2b
′

2. This implies that

ea = ((ea)∗)∗ = (a∗e∗)∗ = (r1f
′

1b
′

1 + r2f
′

2b
′

2)
∗ = b′1

∗

f ′

1
∗

r1
∗ + b′2

∗

f ′

2
∗

r∗2 ∈ b′1
∗

f ′

1
∗

R+

b′2
∗

f ′

2
∗

R.
Since b′

∗

, b′
∗

i ∈ N(R) and f ′∗, f ′∗

i ∈ I(R)′, we now conclude that R is weakly
right IQNN by the results (iii) and (iv). 2
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