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Abstract. Let G be a finite group and let ν(G) be the probability that two randomly

selected elements of G produce a nilpotent group. In this article we show that for every

positive integer n > 0, there is a finite group G such that ν(G) = 1
n
. We also classify all

groups G with ν(G) = 1
2
. Further, we prove that if G is a solvable nonnilpotent group of

even order, then ν(G) ≤ p+3
4p

, where p is the smallest odd prime divisor of |G|, and that

equality exists if and only if G
Z∞(G)

is isomorphic to the dihedral group of order 2p where

Z∞(G) is the hypercenter of G. Finally we find an upper bound for ν(G) in terms of |G|
where G ranges over all groups of odd square-free order.

1. Introduction

In the past 40 years, there has been a growing attention in the application of
probability in finite groups (for example see [8, 16]). In this paper, we denote by
ν(G) the probability that two randomly selected elements of G produce a nilpotent
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subgroup. In other words we have

ν(G) =
|{(x, y) ∈ G×G : ⟨x, y⟩ is nilpotent}|

|G|2
.

The notion ν(G) is introduced in [11] on the model of the commutativity degree,
via

cp(G) =
|{(x, y) ∈ G×G : ⟨x, y⟩ is abelian}|

|G|2
.

Note that for x, y ∈ G, we have xy = yx if and only if ⟨x, y⟩ is abelian.
It is easy to see that cp(G) =

∑
x∈G |CG(x)|

|G|2 where CG(x) is the centralizer of x

in G as CG(x) is a subgroup of G for any x ∈ G.
Similarly if

NilG(x) = {y ∈ G|⟨x, y⟩ is nilpotent},

then

ν(G) =

∑
x∈G |NilG(x)|

|G|2
.

However, NilG(x) is not necessarily a subgroup of G, and so it is difficult to
glean information about a group G from ν(G).

A finite group G is nilpotent if and only if ν(G) = 1 (see Theorem 1 of [5]).
On the other hand, Wilson [16] showed that in finite groups G the probability that
two random elements of G produce a nilpotent group goes to 0 as the index of the
Fitting subgroup of G goes to infinity.

Gustafson [8] proved that if G is a non-abelian group, then cp(G) ≤ 5
8 , and

that equality holds if and only if G
Z(G) is isomorphic to the Kelian four-group Z2 ×

Z2. Several authors determined the structure of a finite group G when cp(G) is
sufficiently large, see [2, 9, 12].

In [7] Guralnick and Wilson found that if G is a nonnilpotent group, then
ν(G) ≤ 1

2 . In this paper we classify groups G with ν(G) = 1
2 (see Proposition 2.6).

It is easy to see that cp(A5) = ν(A5) =
1
12 where A5 is the alternating group

of degree five. Dixon observed that cp(G) ≤ 1
12 for any finite nonabelian simple

group G. This was submitted by Dixon as a problem in Canadian Math. Bulletin,
13 (1970), with his own solution appearing in 1973. Guralnick and Robinson [6]
extended this result to nonsolvable groups and determined precisely for which non-
solvable groups the equality happens. Recently in [10] the authors of the present
paper showed that if G is a group such that NilG(x) is a subgroup of G for every
x ∈ G and ν(G) > 1

12 , then G is solvable.
Fulman et al. [5] proved that if G is a solvable nonnilpotent group and p is the

smallest prime number that divides |G|, then ν(G) ≤ 1
p and equality holds if and

only if p = 2 and G
Z∞(G) is isomorphic to the dihedral group of order 6 (see [5]).

Here Z∞(G) is the hypercenter of G (i.e. the terminal term of the upper central
series of G, see [3, 13]). In this article we improve this upper bound as follows.
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Theorem 1.1. Suppose that G is a solvable nonnilpotent group of even order.
Then ν(G) ≤ p+3

4p where p is the smallest odd prime number that divides |G|; equal-
ity holds if and only if G

Z∞(G(G))
∼= D2p is the dihedral group of order 2p.

For a prime p we denote by Zk
p the elementary abelian group of order pk. We

propose the following conjecture for every nonnilpotent group of odd order.
Conjecture Let G be a finite solvable nonnilpotent group such that |G| =
pn1
1 pn2

2 · · · pnr
r where 2 < p1 < · · · < pr are primes. Then

ν(G) ≤
ptkk + p2l − 1

ptkk p2l
:= max{

ptii + p2j − 1

ptii p
2
j

: pj |ptii − 1, 1 ≤ j < i ≤ r, 1 ≤ ti ≤ ni}

for some 1 ≤ l < k ≤ r and equality holds if and only if G
Z∞(G)

∼= Ztk
pk

o Zpl
. We

think that this conjecture is true for the class of N-groups, introduced by Abdollahi
and Zarrin in [1], which are the groups in which NilG(x) is a nilpotent group for
every x ∈ G \ Z∞(G). We feel that the method used in proof of main theorem of
[15] may be useful in proving this.

In Section 2 we compute ν(G) for Frobenius groups and Dihedral groups. We
also prove that for any positive integer n, there is a group G such that ν(G) = 1

n .
Finally we classify all groups G with ν(G) = 1

2 . In Section 3 we verify Theorem
1.1 and, with Theorem 3.2, confirm the above conjecture for groups of square-free
order.

In this article G is a finite group and Z∞(G) is its hypercenter. Most notation
we use is standard and follows [14].

2. Computing ν(G) for Certain Groups

The following lemmas are very useful in the sequel.

Lemma 2.1. Suppose that G is a group. Then ν(G) = ν( G
Z∞(G) ).

Proof. See Corollary 3 of [5]. 2

Lemma 2.2. Suppose that G and H are finite groups. Then ν(G ×H) = ν(G) ×
ν(H).

Proof. The proof is not complicated. 2

Proposition 2.3. If G = H nK is a Frobenius group where the Frobenius kernel

is K and the complement is H, then ν(G) = 1
|H|2 (1−

1
|K| ) +

ν(H)
|K| .

Proof. By hypothesis, we have CG(h) ⊆ H for each 1 ̸= h ∈ H, CG(k) ⊆ K for each
1 ̸= k ∈ K and H ∩Hx = 1 for each x ∈ G \H. Now if ⟨h1k1, h2k2⟩ is nilpotent
such that h1, h2 ∈ H and k1, k2 ∈ K, then h1 = h2 = 1 or k1 = k2 = 1. On the
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other hand {K, (Hx − 1)|x ∈ K} is a partition of G and since K is nilpotent, we
are done. 2

Corollary 2.4. Suppose that G is the dihedral group of order 2rn where r > 1 and
n is odd. Then ν(G) = n+3

4n .

Proof. Since D2rn

Z(D2rn)
∼= D2r−1n for r > 1, by Lemma 2.1 we conclude that ν(D2rn) =

ν(D2r−1n) = · · · = ν(D2n). Since n is odd, D2n is a Frobenious group with the cyclic
kernel of order n and so we are done by Proposition 2.3. 2

Corollary 2.5. For any integer n > 0, there is a group G of even order such that
ν(G) = 1

n .

Proof. Our proof is by induction on n. If n ∈ {1, 2, 3}, then the result holds since
ν(D2) = 1, ν(D6) = 1

2 and ν(D18) = 1
3 . So assume that n ≥ 4 and the that the

result holds for all positive integers m < n. If n is even, then there is a group H
where ν(H) = 2

n by induction hypothesis and so ν(H × D6) = 1
n by Lemma 2.2.

Suppose that n is odd, then n = 4m+1 or n = 4m+3 for some positive integer m.
It follows from Corollary 2.4 that ν(D2(4m+1)) = m+1

n and ν(D2(12m+9)) = m+1
n .

Since m + 1 < n, we are done by induction hypothesis and Lemma 2.2. This
completes the proof. 2

In the following we classify all groups G with ν(G) = 1
2 .

Proposition 2.6. Suppose that G is a finite group (not necessarily solvable). Then
ν(G) = 1

2 if and only if G
Z∞(G)

∼= D6, the dihedral group of order 6.

Proof. We get necessity by By Lemma 2.1. Conversely if ν(G) = 1
2 , then the

probability of solvability of G is equal or greater than 1
2 and so G is solvable by

[7]. By Theorem 5 of [5], we conclude that ν(G) ≤ 1
2 and equality holds when

G
Z∞(G)

∼= D6, as needed. 2

3. Upper Bound for ν(G)

S. Franciosi and F. Giovanni defined and studied a JNN group as a group all
of whose proper quotients are nilpotent (see [4] and [5], Definition 1). It should be
noted that a finite group G is a JNN group if and only if G = LnA where A is an
elementary abelian p-group and L is a nilpotent group such that p dose not divide
the order of G and the action of L on A is faithful and irreducible (See Theorem 4
of [5] and what follows it).

Proof of Theorem 1.1.

If p = 3, then ν(G) = 1 − ν0(G) ≤ 1
2 by Theorem 5 of [5] and equality holds if

and only if G
Z∞(G)

∼= D6. So we assume that the smallest odd prime divisor of

|G| is greater than 3. It is enough to prove the result for JNN groups. For if G
is a counterexample of minimal order, then there is a nontrivial normal subgroup
K of G such that G

K is nonnilpotent (since G is solvable). Suppose that r is the
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smallest odd prime that divides |GK |. If G
K is of even order, then ν(G) ≤ ν(GK ) ≤

r+3
4r ≤ p+3

4p because r ≥ p. Also if G
K is of odd order, then by Theorem 5 of [5],

ν(G) ≤ ν(GK ) ≤ 1
r ≤ 1

4 ≤ p+3
4p which gives a contradiction. So let us assume that

G is a JNN group. Then G = L n A where L ∼= Pk × Pk−1 × · · · × P1, Pi’s are
the unique Sylow pi-subgroups of L and A is an elementary abelian q-group. By
setting N = Pk−1 n · · · n (P1 n A) we have G = Pk n N . We claim that if q = 2
and 1 ̸= xp ∈ Pk, then |CG(xp)

∩
N | ≤ |N4 |.

Assume that |A| = 2t (t ≥ 2) and H = CG(xp)
∩
A. If |H| = 2t−1 and

a ∈ A \ H, then axp = ah1 for some h1 ∈ H. Hence ax
2
p = axph1 = ah2

1 = a

and so bx
2
p = b for all b ∈ A. But Pk acts faithfully on A which implies that

x2
p = 1, obviously absurd. Hence |H| ≤ 2t−2. If M := Pk−1 ×Pk−2 × · · · ×P1, then

CG(xp)∩N = M(CG(xp)∩A) = MH and so |CG(xp)∩N | = |M ||H| = |N |
|A| |H| ≤ |N |

4 ,

as claimed.

Now we want to count the ordered pairs (x, y) in a fixed pair (a1N, a2N) for
some a1, a2 ∈ G where ⟨x, y⟩ is nilpotent. By page 14 of [5], the probability that a
selected pair (x, y) from the coset pair (xpN, ypN) generates a nilpotent subgroup

is not greater than
|CG(xp)

∩
CG(yp)

∩
N |

|N | and by our claim this probability is equal

or less than 1
4 .

Now we continue by induction on the number k of prime divisors of |L|. Here
our aim is showing that if the upper bound mentioned in the assertion is correct for
N , it is correct for G too. As mentioned above if q = 2, then there is nothing to
prove. So assume that q ̸= 2. Since the action of Pk on A is faithful, in a similar

way it can be seen that |CG(xp)
∩
N | ≤ |N |

q . If q ≥ 5, then this probability is

equal or less than 1
5 ≤ 1

4 ≤ p+3
4p and by the assumption on N , we conclude that

ν(G) ≤ p+3
4p . Also it is not hard to see that if k ≥ 2, then the equality does not hold,

since in this case N is not an elementary group and as mentioned above above in
both cases, whether q is equal to 2 or not, the probability is less than 1

4 < p+3
4p . So

it is enough to prove it for the base step of the induction. Assume that G = RnA
where A = (Zq)

n, R is a Sylow r-subgroup and |R| = rm. Then we investigate two
cases:

Case 1: Assume that q = 2. Then ν(G) ≤ 22n+(22nr2m−22n)× 1
4

22nr2m . So ν(G) ≤
r2m+3
4r2m < r+3

4r . As one can see, equality cannot hold in this case.

Case 2: Suppose that r = 2. Then ν(G) ≤ q2n+(q2n22m−q2n)× 1
q

q2n22m = 22m+q−1
q22m and

since q ̸= 3, we have 22m+q−1
q22m ≤ q+3

4q and equality holds if and only if m = 1 and

hence G ∼= Z2 n (Zq)
n. Now we claim that n = 1.

Let 1 ̸= a ∈ A and 1 ̸= x ∈ R. If ax = a, then ⟨ar⟩ = ⟨a⟩ and since the action of
R on A is irreducible, we have ⟨a⟩ = A. Henceforth G ∼= Z2nZq

∼= D2q. Otherwise,
it can be assumed that CG(R)

∩
A = 1, which results that G ∼= Z2 n (Zq)

n is a

Frobenius group. It follows that ν(G) = qn+3
4qn (see Proposition 2.1). This implies

that the equality exists in our assertion if and only if n = 1 and G ∼= D2q, while G
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is a JNN group.
Now if G is not a JNN group, so there is a normal subgroup N of G such that

G
N is a JNN because G is solvable. Let ν(G) = p+3

4p where p is the smallest odd

prime that divides |G| and G
N is of even order and ps be the smallest odd prime

that divides the order of G
N . Then p+3

4p = ν(G) ≤ ν(GN ) ≤ ps+3
4ps

which implies that

p = ps and G
N

∼= D2p. Now by an argument similar to that on page 16 of [5] it can

be proved that G
Z∞(G)

∼= D2p. Let G
N be of odd order and ps > 3 be its smallest

prime divisor. Then p+3
4p = ν(G) ≤ ν(GN ) ≤ 1

ps
, our final contradiction. 2

For an odd prime p, we denote by Gp the set of all solvable nonnilpotent groups
G of even order such that p is the smallest odd prime that divides the order of G.

Corollary 3.1. Suppose that G ∈ Gp where p is an odd prime . Then ν(G) is the
largest value of ν on Gp if and only if G

Z∞(G)
∼= D2p.

Theorem 3.2. Suppose that G is a finite group of odd order and |G| = p1p2 · · · pr
where p1 < · · · < pr are primes. Then we have

ν(G) ≤ pk + p2l − 1

pkp2l
:= max{

pi + p2j − 1

pip2j
: pj |pi − 1, 1 ≤ j < i ≤ r}

for some 1 ≤ l < k ≤ r and the equality holds if and only if G
Z∞(G)

∼= Zpk
o Zpl

.

Proof. Similar to the proof of Theorem 1.1 we prove it for JNN groups. Let
G = L n A be a JNN group and let p1 < p2 < · · · < pr. Then A ∼= Zpr and
p1p2 · · · pr−1|pr − 1 since L acts faithfully on A. We proceed by induction as it
was done in the Theorem 1.1. Thus set N ≤ G such that |N | = p2p3 · · · pr. It
follows that G = P1 n N . We claim that if the assertion is correct for N it will
be correct for G too. It is not hard to see that the probability that a pair selected
from the coset pair (xpN, ypN) for some xp, yp ∈ P1 generates a nilpotent subgroup

of G is bounded by
|CG(xp)

∩
CG(yp)

∩
N |

|N | . But the action of P1 on A is faithful and

then if both xp and yp are not identity, then
|CG(xp)

∩
CG(yp)

∩
N |

|N | ≤ 1
pr
. Now since

1
pr

< max{pi+p2
j−1

pip2
j

|pj |pi−1, 1 ≤ i, j ≤ r}, one can conclude that the bound is right

and the equality does not hold when r ≥ 3. Coming back to the base of induction,

let |G| = p1p2 with p1 < p2. Then G = Zp1 n Zp2 and ν(G) =
p2+p2

1−1

p2p2
1

, as wanted.
2
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