DOI QR코드

DOI QR Code

원형 노즐의 직경 변화 및 표면으로 부터의 거리변화에 따른 오목한 표면에 충돌하는 제트의 온도장 측정 및 CFD해석

Temperature field measurement and CFD analysis of a jet impinging on a concave surface depending on changes in nozzle to surface distance and the diameter of a circular nozzle

  • Yeongmin Jo (School of Mechanical Engineering, PNU) ;
  • Yujin Im (School of Mechanical Engineering, PNU) ;
  • Eunseop Yeom (School of Mechanical Engineering, Pusan National University (PNU))
  • 투고 : 2023.06.28
  • 심사 : 2023.07.20
  • 발행 : 2023.07.31

초록

The characteristic of jet impinging on the concave surface were analyzed through thermographic phosphor thermometry (TPT) and numerical investigation. Under a jet Reynolds number of 6600, nozzle diameters and nozzle-to-surface distances (H/d) were changed 5mm and 10mm and H/d=2 and 5. The RNG k-ε turbulence model can accurately predict the distribution of Nusselt number, compared to other models (SST k-ω, realizable k-ε). Heat transfer characteristics varied with the nozzle diameter and H/d, with a secondary peak noted at H/d =2, due to vortex-induced flow detachment and reattachment. An increase in nozzle diameter enhanced jet momentum, turbulence strength, and heat transfer.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2020R1A5A8018822).

참고문헌

  1. Yi, S. J., Kim, M., Kim, D., Kim, H. D. and Kim, K. C., 2016, "Transient Temperature Field and Heat Transfer Measurement of Oblique Jet Impingement by Thermographic Phosphor," International Journal of Heat and Mass Transfer, Vol. 102, No., pp. 691-702.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.062
  2. Kim, M., Kim, D. and Yeom, E., 2020, "Measurement of Three-Dimensional Flow Structure and Transient Heat Transfer on Curved Surface Impinged by Round Jet," International Journal of Heat and Mass Transfer, Vol. 161, No., pp. 120279. 
  3. Cai, T., Kim, D., Kim, M., Liu, Y. Z. and Kim, K. C., 2016, "Two-Dimensional Thermographic Phosphor Thermometry in a Cryogenic Environment," Measurement Science and Technology, Vol. 28, No. 1, pp. 015201. 
  4. 임유진 and 염은섭, 2021, "온도감응형 인광물질을 이용한 온도장 및 열변형 동시 계측 기법 개발," 한국가시화정보학회지, Vol. 19, No. 3, pp. 77-83.  https://doi.org/10.5407/JKSV.2021.19.3.077
  5. Alimohammadi, S., Murray, D. B. and Persoons, T., 2014, "Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet," Journal of Heat Transfer, Vol. 136, No. 9, pp.
  6. Rakhsha, S., Zargarabadi, M. R. and Saedodin, S., 2023, "The Effect of Nozzle Geometry on the Flow and Heat Transfer of Pulsed Impinging Jet on the Concave Surface," International Journal of Thermal Sciences, Vol. 184, No., pp. 107925. 
  7. Yakhot, V. and Orszag, S. A., 1986, "Renormalization Group Analysis of Turbulence. I. Basic Theory," Journal of scientific computing, Vol. 1, No. 1, pp. 3-51.  https://doi.org/10.1007/BF01061452
  8. Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z. and Zhu, J., 1995, "A New K-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows," Computers & fluids, Vol. 24, No. 3, pp. 227-238.  https://doi.org/10.1016/0045-7930(94)00032-T
  9. Menter, F. R., 1994, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA journal, Vol. 32, No. 8, pp. 1598-1605.  https://doi.org/10.2514/3.12149
  10. Aillaud, P., Gicquel, L. and Duchaine, F., 2017, "Investigation of the Concave Curvature Effect for an Impinging Jet Flow," Physical Review Fluids, Vol. 2, No. 11, pp. 114608. 
  11. Kubacki, S. and Dick, E., 2010, "Simulation of Plane Impinging Jets with K-Ω Based Hybrid Rans/Les Models," International Journal of Heat and Fluid Flow, Vol. 31, No. 5, pp. 862-878.  https://doi.org/10.1016/j.ijheatfluidflow.2010.04.011
  12. Yadav, H. and Agrawal, A., 2018, "Effect of Vortical Structures on Velocity and Turbulent Fields in the near Region of an Impinging Turbulent Jet," Physics of Fluids, Vol. 30, No. 3, pp. 035107. 
  13. Lee, D. H., Song, J. and Jo, M. C., 2004, "The Effects of Nozzle Diameter on Impinging Jet Heat Transfer and Fluid Flow," J Heat Transfer, Vol. 126, No. 4, pp. 554-557.  https://doi.org/10.1115/1.1777583