DOI QR코드

DOI QR Code

상변화물질을 활용한 원통형 리튬이온 배터리 셀의 냉각성능 및 등온유지성에 관한 연구

Study on cooling performance and isothermal maintenance of cylindrical type lithium-ion battery cell using phase change material

  • Jae Hyung Yoon (Department of Mechanical Engineering, WKU) ;
  • Su Woong Hyun (Department of Mechanical Engineering, WKU) ;
  • Hee Jun Jeong (Department of Smart Automotive Engineering, WKU) ;
  • Dong Ho Shin (Department of Smart Automotive Engineering, Wonkwang University (WKU))
  • 투고 : 2023.06.23
  • 심사 : 2023.07.16
  • 발행 : 2023.07.31

초록

When lithium-ion batteries operate out of the proper temperature range, their performance can be significantly degraded and safety issues such as thermal runaway can occur. Therefore, battery thermal management systems are widely researched to maintain the temperature of Li-ion battery cells within the proper temperature range during the charging and discharging process. This study investigates the cooling performance and isothermal maintenance of cooling materials by measuring the surface temperature of a battery cell with or without cooling materials, such as silicone oil, thermal adhesive, and phase change materials during discharge process of battery by the experimental and numerical analysis. As a result of the experiment, the battery pack filled with phase change material showed a temperature reduction of 47.4 ℃ compared to the case of natural convection. It proves the advanced utility of the cooling unit using phase change material that is suitable for use in battery thermal management systems.

키워드

과제정보

이 논문은 2022학년도 원광대학교의 교비 지원에 의해 수행됨.

참고문헌

  1. Osmani, K., 2023, "Recent progress in the thermal management of lithium-ion batteries", Journal of Cleaner Production, Volume 389, 136024.
  2. Aravindan, V., 2018, "Electrochemical Activity of Hematite Phase in Full-Cell Li-ion Assemblies", Advanced Energy Materials, Volume 8, 1702841.
  3. Tete, P. R., 2021, "Developments in battery thermal management systems for electric vehicles: A technical review", Journal of Energy Storage, Volume 35, 102255.
  4. Dongwoo, K., 2021, "Design of flow path with 2 inlet and outlets to improve cell performance and prevent cell degradation in Solid Oxide Fuel Cell", Journal of the Korean Society of Visualization, Volume 19(2), pp. 56-62
  5. Sungji, Y., 2022, "Comparison of Experimental and Simulation Results for Flow Characteristics around Jet Impingement/Effusion Hole in Concave Hemispherical Surface", Journal of the Korean Society of Visualization, Volume 20(2), pp. 28-37
  6. Hakeem Akinlabi, A. A., 2020, "Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review", Renewable and Sustainable Energy Reviews, Volume 125, 109815.
  7. Kalaf, O., 2021, "Experimental and simulation study of liquid coolant battery thermal management system for electric vehicles: A review", International Journal of Energy Research, Volume 45, pp. 6495-6517. https://doi.org/10.1002/er.6268
  8. Kannan, C., 2021, "Critical review towards thermal management systems of lithium-ion batteries in electric vehicle with its electronic control unit and assessment tools", Journal of Automobile Engineering, Volume 235, pp. 1783-1807. https://doi.org/10.1177/0954407020982865
  9. He, L., 2023, "Review of thermal management system for battery electric vehicle", Journal of Energy Storage, Volume 59, 106443.
  10. Shin, D. H., 2019, "A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule", Energy Conversion and Management, Volume 185, pp.508-519. https://doi.org/10.1016/j.enconman.2018.12.091
  11. Shin, D. H., 2022, "Development of a new type of PCM thermal capsule transport system", International Journal of Heat and Mass Transfer, Volume 183, 122034.
  12. Li, J., 2020, "Thermal characteristics of power battery module with composite phase change material and external liquid cooling", International Journal of Heat and Mass Transfer, Volume 156, 119820.
  13. Luo, J., 2022, "Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review", Chemical Engineering Journal, Volume 430, Part 1, 132741.
  14. Hallaj, S. AI., 2000, "A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material", Journal of the Electrochemical Society, Volume 147, pp. 3231-3236. https://doi.org/10.1149/1.1393888
  15. Bai, F., 2019, "Thermal performance of pouch Lithium-ion battery module cooled by phase change materials", Energy Procedia, Volume 158, pp. 3682-3689. https://doi.org/10.1016/j.egypro.2019.01.891
  16. Moraga, N. O., 2016, "Cooling li-ion batteries of racing solar car by using multiple phase change materials", Applied Thermal Engineering, Volume 108, pp. 1041-1054. https://doi.org/10.1016/j.applthermaleng.2016.07.183
  17. Xiangwei, L., 2021, "Research Progress of Phase Change Storage Material on Power Battery Thermal Management", Energy Technology, Volume 9, Issue 4
  18. Bernardi, D., 1985, "A General Energy Balance for Battery Systems", J. Electrochem. Soc, Volume 132, No.1
  19. Dong, F., 2021, "Investigation and optimization on cooling performance of a novel double helix structure for cylindrical lithium-ion batteries", Applied Thermal Engineering, Volume 189, 116758
  20. Chitradeep, S., 2009, "Battery pack modeling for the analysis of battery management system of a hybrid electric vehicle", IEEE, pp. 207-2012
  21. Shaofei, W., 2020, "Thermal conductivity enhancement on phase change materials for thermal energy storage: A review", Energy Storage Materials,Volume 25, pp. 251-295 https://doi.org/10.1016/j.ensm.2019.10.010
  22. Ewelina, R., 2020, "The Impact of Heat Exchangers' Constructions on the Melting and Solidification Time of Phase Change Materials", energies, Volume 13, 4840