DOI QR코드

DOI QR Code

Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation

  • Laxmi Sen Thakuri (Department of Nutraceutical Resources, Mokpo National University) ;
  • Chul Min Park (Department of Nutraceutical Resources, Mokpo National University) ;
  • Jin Woo Park (Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University) ;
  • Hyeon-A Kim (Department of Food and Nutrition, Mokpo National University) ;
  • Dong Young Rhyu (Department of Nutraceutical Resources, Mokpo National University)
  • Received : 2022.01.13
  • Accepted : 2022.12.26
  • Published : 2023.03.15

Abstract

Obesity-induced inflammation is crucial in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we investigated the effects of the Gracilaria chorda (GC) on lipid accumulation and obesity-induced inflammatory changes or glucose homeostasis in cell models (3T3-L1 adipocytes and RAW 264.7 macrophages). Samples of GC were extracted using solvents (water, methanol, and ethanol) and subcritical water (SW) at different temperatures (90, 150, and 210℃). The total phenolic content of GCSW extract at 210℃ (GCSW210) showed the highest content compared to others, and GCSW210 highly inhibited lipid accumulation and significantly reduced gene expressions of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein-1c, and fatty acid synthase in 3T3-L1 adipocytes. In addition, GCSW210 effectively downregulated the pro-inflammatory cytokine regulator pathways in RAW 264.7 macrophages, including mitogen-activated protein kinase, signal transducers and activators of transcription and nuclear factor-κB. In co-culture of 3T3-L1 adipocytes and RAW 264.7 macrophages, GCSW210 significantly reduced nitric oxide production and interleukin-6 levels, and improved glucose uptake with dose-dependent manner. These findings suggest that GCSW210 improves glucose metabolism by attenuating obesity-induced inflammation in adipocytes, which may be used as a possible treatment option for managing obesity and associated metabolic disorders.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07050273). This research was supported by the Research Funds of the Convergence Research Laboratory established by the Mokpo National University (MNU) Innovation Support Project in 2020. Also, this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A5A8033794).

References

  1. Bagaev, A. V., Garaeva, A. Y., Lebedeva, E. S., Pichugin, A. V., Ataullakhanov, R. I. & Ataullakhanov, F. I. 2019. Elevated pre-activation basal level of nuclear NF-κB in native macrophages accelerates LPS-induced translocation of cytosolic NF-κB into the cell nucleus. Sci. Rep. 9:4563.
  2. Chang, E. & Kim, C. Y. 2019. Natural products and obesity: a focus on the regulation of mitotic clonal expansion during adipogenesis. Molecules 24:1157.
  3. Coura, C. O., Souza, R. B., Rodrigues, J. A. G., Vanderlei, E, de. S. O., de Araujo, I. W. F., Ribeiro, N. A., Frota, A. F., Ribeiro, K. A., Chaves, H. V., Pereira, K. M. A., da Cunha, R. M. S., Bezerra, M. M. & Benevides, N. M. B. 2015. Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats. PLoS ONE 10:e0119319.
  4. Czech, M. P. 2017. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23:804-814. https://doi.org/10.1038/nm.4350
  5. Hiramitsu, M., Shimada, Y., Kuroyanagi, J., Inoue, T., Katagiri, T., Zang, L., Nishimura, Y., Nishimura, N. & Tanaka, T. 2014. Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Sci. Rep. 4:3708.
  6. Hristov, I., Mocanu, V., Zugun-Eloae, F., Labusca, L., CretuSilivestru, I., Oboroceanu, T., Tiron, C., Tiron, A., Burlacu, A., Pinzariu, A. C., Armasu, I., Neagoe, R. M., Covic, A., Scripcariu, V. & Timofte, D. V. 2019. Association of intracellular lipid accumulation in subcutaneous adipocyte precursors and plasma adipokines in bariatric surgery candidates. Lipids Health Dis. 18:141.
  7. Inafuku, M., Nugara, R. N., Kamiyama, Y., Futenma, I., Inafuku, A. & Oku, H. 2013. Cirsium brevicaule A. GRAY leaf inhibits adipogenesis in 3T3-L1 cells and C57BL/6 mice. Lipids Health Dis. 12:124.
  8. Kakita, H. & Kamishima, H. 2006. Effects of environmental factors and metal ions on growth of the red alga Gracilaria Chorda Holmes (Gracilariales, Rhodophyta). J. Appl. Phycol. 18:469-474. https://doi.org/10.1007/s10811-006-9047-5
  9. Kapalavavi, B., Doctor, N., Zhang, B. & Yang, Y. 2021. Subcritical water extraction of Salvia miltiorrhiza. Molecules 26:1634.
  10. Kim, C. -S., Kwon, Y., Choe, S. -Y., Hong, S. -M., Yoo, H., Goto, T., Kawada, T., Choi, H. -S., Joe, Y., Chung, H. T. & Yu, R. 2015. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr. Metab. 12:33.
  11. Kumar, M. S. Y., Dutta, R., Prasad, D. & Misra, K. 2011. Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem. 127:1309-1316. https://doi.org/10.1016/j.foodchem.2011.01.088
  12. Lee, H. G., Nagahawatta, D. P., Liyanage, N. M., Jayawardhana, H. H. A. C. K., Yang, F., Je, J. G., Kang, M. C., Kim, H. S., Jeon, Y. J., Lee, H. G. & Nagahawatta, D. P. 2022. Structural characterization and anti-inflammatory activity of fucoidan isolated from Ecklonia maxima stipe. Algae 37:239-247. https://doi.org/10.4490/algae.2022.37.9.12
  13. Lin, T. -Y., Chiu, C. -J., Kuan, C. -H., Chen, F. -H., Shen, Y. -C., Wu, C. -H. & Hsu, Y. -H. 2020. IL-29 promoted obesity-induced inflammation and insulin resistance. Cell. Mol. Immunol. 17:369-379. https://doi.org/10.1038/s41423-019-0262-9
  14. Makki, K., Froguel, P. & Wolowczuk, I. 2013. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013:139239.
  15. Martos-Rus, C., Katz-Greenberg, G., Lin, Z., Serrano, E., Whitaker-Menezes, D., Domingo-Vidal, M., Roche, M., Ramaswamy, K., Hooper, D. C., Falkner, B. & Martinez Cantarin, M. P. 2021. Macrophage and adipocyte interaction as a source of inflammation in kidney disease. Sci. Rep. 11:2974.
  16. Meinita, M. D. N., Marhaeni, B., Winanto, T., Jeong, G. T., Khan, M. N. A. & Hong, Y. -K. 2013. Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 25:1957-1961. https://doi.org/10.1007/s10811-013-0041-4
  17. Mohibbullah, M., Hannan, M. A., Choi, J. -Y., Bhuiyan, M. M. H., Hong, Y. -K., Choi, J. S., Choi, I. S. & Moon, I. S. 2015. The edible marine alga Gracilariopsis chorda alleviates hypoxia/reoxygenation-induced oxidative stress in cultured hippocampal neurons. J. Med. Food 18:960-971. https://doi.org/10.1089/jmf.2014.3369
  18. Mohibbullah, M., Hannan, M. A., Park, I.-S., Moon, I. S. & Hong, Y.-K. 2016. The edible red seaweed Gracilariopsis chorda promotes axodendritic architectural complexity in hippocampal neurons. J. Med. Food 19:638-644. https://doi.org/10.1089/jmf.2016.3694
  19. Nandipati, K. C., Subramanian, S. & Agrawal, D. K. 2017. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol. Cell. Biochem. 426:27-45. https://doi.org/10.1007/s11010-016-2878-8
  20. Neto, R. T., Marcal, C., Queiros, A. S., Abreu, H., Silva, A. M. S. & Cardoso, S. M. 2018. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as functional ingredients. Int. J. Mol. Sci. 19:2987.
  21. Ono, M. & Fujimori, K. 2011. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J. Agric. Food Chem. 59:13346-13352. https://doi.org/10.1021/jf203490a
  22. Panee, J. 2012. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine 60:1-12. https://doi.org/10.1016/j.cyto.2012.06.018
  23. Park, C. H., Rhyu, D. Y., Sharma, B. R. & Yokozawa, T. 2013. Inhibition of preadipocyte differentiation and lipid accumulation by 7-O-galloyl-d-sedoheptulose treatment in 3T3-L1 adipocytes. Biomed. Prev. Nutr. 3:319-324. https://doi.org/10.1016/j.bionut.2013.03.012
  24. Park, J., Min, J. -S., Kim, B., Chae, U. -B., Yun, J. W., Choi, M. S., Kong, I. -K., Chang, K. -T. & Lee, D. -S. 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci. Lett. 584:191-196. https://doi.org/10.1016/j.neulet.2014.10.016
  25. Park, J., Um, J. I., Jo, A., Lee, J., Jung, D. -W., Williams, D. R. & Park, S. B. 2014. Impact of molecular charge on GLUT-specific cellular uptake of glucose bioprobes and in vivo application of the glucose bioprobe, GB2-Cy3. Chem. Commun. 50:9251-9254. https://doi.org/10.1039/C4CC00955J
  26. Park, Y. -J., Seo, D. -W., Ju, J. -Y., Cha, Y. -Y. & An, H. -J. 2019. The antiobesity effects of Buginawa in 3T3-L1 preadipocytes and in a mouse model of high-fat diet-induced obesity. BioMed Res. Int. 2019:3101987.
  27. Pi-Sunyer, F. X. 1993. Medical hazards of obesity. Ann. Intern. Med. 119:655-660. https://doi.org/10.7326/0003-4819-119-7_Part_2-199310011-00006
  28. Rosen, E. D. & Spiegelman, B. M. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847-853. https://doi.org/10.1038/nature05483
  29. Rotter, V., Nagaev, I. & Smith, U. 2003. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 278:45777-45784. https://doi.org/10.1074/jbc.M301977200
  30. Rumbaoa, R. G. O., Cornago, D. F. & Geronimo, I. M. 2009. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem. 113:1133-1138. https://doi.org/10.1016/j.foodchem.2008.08.088
  31. Shahidi, F. & Ambigaipalan, P. 2015. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects - A review. J. Funct. Foods 18:820-897. https://doi.org/10.1016/j.jff.2015.06.018
  32. Sharma, B. R., Kim, H. J., Kim, M. S., Park, C. M. & Rhyu, D. Y. 2017. Caulerpa okamurae extract inhibits adipogenesis in 3T3-L1 adipocytes and prevents high-fat diet-induced obesity in C57BL/6 mice. Nutr. Res. 47:44-52. https://doi.org/10.1016/j.nutres.2017.09.002
  33. Sharma, B. R. & Rhyu, D. Y. 2014. Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes. Asian Pac. J. Trop. Biomed. 4:575-580. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0091
  34. Sharma, K., Adhikari, D., Kim, H. J., Oh, S. -H., Oak, M. -H. & Yi, E. 2019. Citrus junos fruit extract facilitates antiadipogenic activity of Garcinia cambogia extract in 3T3-L1 adipocytes by reducing oxidative stress. J. Nanosci. Nanotechnol. 19:915-921. https://doi.org/10.1166/jnn.2019.15915
  35. Shin, H. -S., Kang, S. -I., Park, D. -B. & Kim, S. J. 2016. Resveratrol suppresses inflammatory responses and improves glucose uptake in adipocytes interacted with macrophages. Genes Genomics 38:137-143. https://doi.org/10.1007/s13258-015-0348-4
  36. Spiegelman, B. M. & Flier, J. S. 2001. Obesity and the regulation of energy balance. Cell 104:531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  37. Suganami, T., Nishida, J. & Ogawa, Y. 2005. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acid and tumor necrosis factor alpha. Arterioscler. Thromb. Vasc. Biol. 25:2062-2068. https://doi.org/10.1161/01.ATV.0000183883.72263.13
  38. Sun, Y., Zhang, D., Mao, M., Lu, Y. & Jiao, N. 2017. Roles of p38 and JNK protein kinase pathways activated by compound cantharidin capsules containing serum on proliferation inhibition and apoptosis of human gastric cancer cell line. Exp. Ther. Med. 14:1809-1817. https://doi.org/10.3892/etm.2017.4704
  39. Tateya, S., Kim, F. & Tamori, Y. 2013. Recent advances in obesity-induced inflammation and insulin resistance. Front. Endocrinol. 4:93.
  40. Vandanmagsar, B., Youm, Y. -H., Ravussin, A., Galgani, J. E., Stadler, K., Mynatt, R. L., Ravussin, E., Stephens, J. M. & Dixit, V. D. 2011. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17:179-188. https://doi.org/10.1038/nm.2279
  41. van Herpen, N. A. & Schrauwen-Hinderling, V. B. 2008. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav. 94:231-241. https://doi.org/10.1016/j.physbeh.2007.11.049