DOI QR코드

DOI QR Code

Feeding by common heterotrophic protists on the mixotrophic dinoflagellate Ansanella granifera (Suessiaceae, Dinophyceae)

  • Hee Chang Kang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Hae Jin Jeong (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • An Suk Lim (Division of Life Science, Gyeongsang National University) ;
  • Jin Hee Ok (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Ji Hyun You (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Sang Ah Park (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Se Hee Eom (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • 투고 : 2023.01.11
  • 심사 : 2023.02.24
  • 발행 : 2023.03.15

초록

The mortality rate of red-tide dinoflagellates owing to predation is a major parameter that affects their population dynamics. The dinoflagellates Ansanella granifera and Ansanella sp. occasionally cause red tides. To understand the interactions between common heterotrophic protists and A. granifera, we explored the feeding occurrence of nine heterotrophic protists on A. granifera and the growth and ingestion rates of the heterotrophic dinoflagellate Gyrodinium dominans on A. granifera as a function of prey concentration and those of Oxyrrhis marina at a single high prey concentration. The heterotrophic dinoflagellates Aduncodinium glandula, G. dominans, Gyrodinium moestrupii, Luciella masanensis, Oblea rotunda, O. marina, Polykrikos kofoidii, and Pfiesteria piscicida and the naked ciliate Strombidium sp. were able to feed on A. granifera. With increasing mean prey concentrations, the growth and ingestion rates of G. dominans feeding on A. granifera rapidly increased and became saturated or slowly increased. The maximum growth and ingestion rates of G. dominans on A. granifera were 0.305 d-1 and 0.42 ng C predator-1 d-1 (3.8 cells predator-1 d-1), respectively. Furthermore, the growth and ingestion rates of O. marina on A. granifera at 1,700 ng C mL-1 (15,454 cells mL-1) were 0.037 d-1 and 0.19 ng C predator-1 d-1 (1.7 cells predator-1 d-1), respectively. The growth and ingestion rates of G. dominans and O. marina feeding on A. granifera were almost the lowest among those on the dinoflagellate prey species. Therefore, G. dominans and O. marina may prefer A. granifera less than other dinoflagellate prey species. The low mortality rate of A. granifera may positively affect its bloom formation.

키워드

과제정보

We thank Dr. Yeong Du Yoo and Se Hyeon Jang for their support and editors and reviewers for their valuable comments. This research was supported by the National Research Foundation funded by the Ministry of Science and ICT (NRF-2020M3F6A1110582; NRF-2021M3I6A1091272; NRF-2021R1A2C1093379) award to HJJ.

참고문헌

  1. Adolf, J. E., Krupatkina, D., Bachvaroff, T. & Place, A. R. 2007. Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum. Harmful Algae 6:400-412.  https://doi.org/10.1016/j.hal.2006.12.003
  2. Ayala-Galvan, K., Gutierrez-Salcedo, J. M. & Montoya-Cadavid, E. 2022. Phytoplankton from the oceanic province of the Colombian Caribbean Sea: ten years of history. Biota Colomb. 23:e401. 
  3. Belevich, T. A., Milyutina, I. A. & Troitsky, A. V. 2021. Seasonal variability of photosynthetic microbial eukaryotes (<3 ㎛) in the Kara Sea revealed by 18S rDNA metabarcoding of sediment trap fluxes. Plants 10:2394. 
  4. Claessens, M., Wickham, S. A., Post, A. F. & Reuter, M. 2008. Ciliate community in the oligotrophic Gulf of Aqaba, Red Sea. Aquat. Microb. Ecol. 53:181-190.  https://doi.org/10.3354/ame01243
  5. Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409.  https://doi.org/10.1111/j.1550-7408.1999.tb04620.x
  6. Dawut, M., Sym, S. D. & Horiguchi, T. 2018. Re-investigation of Gymnodinium natalense (Dinophyceae), a tidal pool dinoflagellate from South Africa and the proposal of a new combination Ansanella natalensis. Phycol. Res. 66:300-309.  https://doi.org/10.1111/pre.12329
  7. Eom, S. H., Jeong, H. J., Ok, J. H., Park, S. A., Kang, H. C., You, J. H., Lee, S. Y., Yoo, Y. D., Lim, A. S. & Lee, M. J. 2021. Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020. Algae 36:25-36.  https://doi.org/10.4490/algae.2021.36.2.22
  8. Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17:805-815.  https://doi.org/10.4319/lo.1972.17.6.0805
  9. Guo, Z., Zhang, H., Liu, S. & Lin, S. 2013. Biology of the marine heterotrophic dinoflagellate Oxyrrhis marina: current status and future directions. Microorganisms 1:33-57.  https://doi.org/10.3390/microorganisms1010033
  10. Hallegraeff, G. M. 1995. Harmful algal blooms: a global overview. In Hallegraeff, G. M., Anderson, D. M. & Cembella, A. D. (Eds.) Manual on Harmful Marine Microalgae. UNESCO, Paris, pp. 1-22. 
  11. Hansen, P. J. 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58:203-214.  https://doi.org/10.1111/j.1550-7408.2011.00537.x
  12. Hansen, P. J., Bjornsen, P. K. & Hansen, B. W. 1997. Zooplankton grazing and growth: scaling within the 2-2,000-㎛ body size range. Limnol. Oceanogr. 42:687-704.  https://doi.org/10.4319/lo.1997.42.4.0687
  13. Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189.  https://doi.org/10.1007/BF00395638
  14. Jang, S. H., Jeong, H. J., Kwon, J. E. & Lee, K. H. 2017. Mixotrophy in the newly described dinoflagellate Yihiella yeosuensis: a small, fast dinoflagellate predator that grows mixotrophically, but not autotrophically. Harmful Algae 62:94-103.  https://doi.org/10.1016/j.hal.2016.12.007
  15. Jang, S. H., Jeong, H. J., Lim, A. S., Kwon, J. E. & Kang, N. S. 2016. Feeding by the newly described heterotrophic dinoflagellate Aduncodinium glandula: having the most diverse prey species in the family Pfiesteriaceae. Algae 31:17-31.  https://doi.org/10.4490/algae.2016.31.2.2
  16. Jang, S. H., Jeong, H. J., Moestrup, O., Kang, N. S., Lee, S. Y., Lee, K. H., Lee, M. J. & Noh, J. H. 2015. Morphological, molecular and ecophysiological characterization of the phototrophic dinoflagellate Biecheleriopsis adriatica from Korean coastal waters. Eur. J. Phycol. 50:301-317.  https://doi.org/10.1080/09670262.2015.1054892
  17. Jeong, H. J., Jang, S. H., Moestrup, O., Kang, N. S., Lee, S. Y., Potvin, E. & Noh, J. H. 2014a. Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea. Algae 29:75-99.  https://doi.org/10.4490/algae.2014.29.2.075
  18. Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., Ok, J. H., You, J. H., Kim, J. H., Lee, K. H., Park, S. A., Eom, S. H., Yoo, Y. D. & Kim, K. Y. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214. 
  19. Jeong, H. J., Kang, H., Shim, J. H., Park, J. K., Kim, J. S., Song, J. Y. & Choi, H. -J. 2001a. Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp. Mar. Ecol. Prog. Ser. 218:77-86.  https://doi.org/10.3354/meps218077
  20. Jeong, H. J., Kang, H. C., You, J. H. & Jang, S. H. 2018a. Interactions between the newly described small- and fast-swimming mixotrophic dinoflagellate Yihiella yeosuensis and common heterotrophic protists. J. Eukaryot. Microbiol. 65:612-626.  https://doi.org/10.1111/jeu.12506
  21. Jeong, H. J., Kim, J. S., Lee, K. H., Seong, K. A., Yoo, Y. D., Kang, N. S., Kim, T. H., Song, J. Y. & Kwon, J. E. 2017. Differential interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and common heterotrophic protists and copepods: killer or prey. Harmful Algae 62:37-51.  https://doi.org/10.1016/j.hal.2016.12.005
  22. Jeong, H. J., Kim, J. S., Song, J. Y., Kim, J. H., Kim, T. H., Kim, S. K. & Kang, N. S. 2007. Feeding by heterotrophic protists and copepods on the heterotrophic dinoflagellates Pfiesteria pisicicida, Stoeckeria algicida, and Luciella masanensis. Mar. Ecol. Prog. Ser. 349:199-211.  https://doi.org/10.3354/meps07094
  23. Jeong, H. J., Kim, S. K., Kim, J. S., Kim, S. T., Yoo, Y. D. & Yoon, J. Y. 2001b. Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide and toxic dinoflagellates. J. Eukaryot. Microbiol. 48:298-308.  https://doi.org/10.1111/j.1550-7408.2001.tb00318.x
  24. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.  https://doi.org/10.1016/j.hal.2015.06.004
  25. Jeong, H. J., Lim, A. S., Yoo, Y. D., Lee, M. J., Lee, K. H., Jang, T. Y. & Lee, K. 2014b. Feeding by heterotrophic dinoflagellates and ciliates on the free-living dinoflagellate Symbiodinium sp. (Clade E). J. Eukaryot. Microbiol. 61:27-41.  https://doi.org/10.1111/jeu.12083
  26. Jeong, H. J., Seong, K. A., Yoo, Y. D., Kim, T. H., Kang, N. S., Kim, S., Park, J. Y., Kim, J. S., Kim, G. H. & Song, J. Y. 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on hetertrophic bacteria. J. Eukaryot. Microbiol. 55:271-288.  https://doi.org/10.1111/j.1550-7408.2008.00336.x
  27. Jeong, H. J., Shim, J. H., Kim, J. S., Park, J. Y., Lee, C. W. & Lee, Y. 1999. Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red-tide and toxic dinoflagellates. Mar. Ecol. Prog. Ser. 176:263-277.  https://doi.org/10.3354/meps176263
  28. Jeong, H. J., Yoo, Y. D., Kang, N. S., Rho, J. R., Seong, K. A., Park, J. W., Nam, G. S. & Yih, W. 2010a. Ecology of Gymnodinium aureolum. I. Feeding in western Korean waters. Aquat. Microb. Ecol. 59:239-255.  https://doi.org/10.3354/ame01394
  29. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010b. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91.  https://doi.org/10.1007/s12601-010-0007-2
  30. Jeong, H. J., Yoon, J. Y., Kim, J. S., Yoo, Y. D. & Seong, K. A. 2002. Growth and grazing rates of the prostomatid ciliate Tiarina fusus on red-tide and toxic algae. Aquat. Microb. Ecol. 28:289-297.  https://doi.org/10.3354/ame028289
  31. Jeong, H. J., You, J. H., Lee, K. H., Kim, S. J. & Lee, S. Y. 2018b. Feeding by common heterotrophic protists on the mixotrophic alga Gymnodinium smaydae (Dinophyceae), one of the fastest growing dinoflagellates. J. Phycol. 54:734-743.  https://doi.org/10.1111/jpy.12775
  32. Kamykowski, D. & McCollum, S. A. 1986. The temperature acclimatized swimming speed of selected marine dinoflagellates. J. Plankton Res. 8:275-287.  https://doi.org/10.1093/plankt/8.2.275
  33. Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, K. H. 2019a. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates. Algae 34:127-140.  https://doi.org/10.4490/algae.2019.34.5.29
  34. Kang, H. C., Jeong, H. J., Kim, S. J., You, J. H. & Ok, J. H. 2018. Differential feeding by common heterotrophic protists on 12 different Alexandrium species. Harmful Algae 78:106-117.  https://doi.org/10.1016/j.hal.2018.08.005
  35. Kang, H. C., Jeong, H. J., Ok, J. H., You, J. H., Jang, S. H., Lee, S. Y., Lee, K. H., Park, J. Y. & Rho, J. -R. 2019b. Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR. Algae 34:111-126.  https://doi.org/10.4490/algae.2019.34.5.25
  36. Kang, H. C., Jeong, H. J., Park, S. A., Eom, S. H., Ok, J. H., You, J. H., Jang, S. H. & Lee, S. Y. 2020. Feeding by the newly described heterotrophic dinoflagellate Gyrodinium jinhaense: comparison with G. dominans and G. moestrupii. Mar. Biol. 167:156. 
  37. Kang, N. S., Jeong, H. J., Moestrup, O., Jang, T. Y., Lee, S. Y. & Lee, M. J. 2015. Aduncodinium gen. nov. and A. glandula comb. nov. (Dinophyceae, Pfiesteriaceae), from coastal waters off Korea: morphology and molecular characterization. Harmful Algae 41:25-37.  https://doi.org/10.1016/j.hal.2014.11.002
  38. Kang, N. S., Jeong, H. J., Yoo, Y. D., Yoon, E. Y., Lee, K. H., Lee, K. & Kim, G. 2011. Mixotrophy in the newly described phototrophic dinoflagellate Woloszynskia cincta from western Korean waters: feeding mechanism, prey species and effect of prey concentration. J. Eukaryot. Microbiol. 58:152-170.  https://doi.org/10.1111/j.1550-7408.2011.00531.x
  39. Kim, J. S. & Jeong, H. J. 2004. Feeding by the heterotrophic dinoflagellates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 280:85-94.  https://doi.org/10.3354/meps280085
  40. Kok, J. W. K. & Leong, S. C. Y. 2019. Nutrient conditions and the occurrence of a Karenia mikimotoi (Kareniaceae) bloom within East Johor Straits, Singapore. Reg. Stud. Mar. Sci. 27:100514. 
  41. LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R. & Santos, S. R. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28:2570-2580.  https://doi.org/10.1016/j.cub.2018.07.008
  42. Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J. -H., Kim, K. Y., Park, K. -T. & Lee, K. 2014a. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125.  https://doi.org/10.1016/j.jembe.2014.05.011
  43. Lee, M. J., Jeong, H. J., Kim, J. S., Jang, K. K., Kang, N. S., Jang, S. H., Lee, H. B., Lee, S. B., Kim, H. S. & Choi, C. H. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists. Algae 32:285-308.  https://doi.org/10.4490/algae.2017.32.11.28
  44. Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014b. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152.  https://doi.org/10.4490/algae.2014.29.2.137
  45. Lee, S. Y., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H., Park, S. A. & Eom, S. H. 2021. Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters. Algae 36:37-50.  https://doi.org/10.4490/algae.2021.36.3.4
  46. Li, G., Huang, L., Liu, H., Ke, Z., Lin, Q., Ni, G., Yin, J., Li, K., Song, X., Shen, P. & Tan, Y. 2012. Latitudinal variability (6°S-20°N) of early summer phytoplankton species compositions and size-fractioned productivity from Java Sea to South China Sea. Mar. Biol. Res. 8:163-171.  https://doi.org/10.1080/17451000.2011.615323
  47. Lim, A. S. & Jeong, H. J. 2021. Benthic dinoflagellates in Korean waters. Algae 36:91-109.  https://doi.org/10.4490/algae.2021.36.5.31
  48. Lim, A. S. & Jeong, H. J. 2022. Primary production by phytoplankton in the territorial seas of the Republic of Korea. Algae 37:265-279.  https://doi.org/10.4490/algae.2022.37.11.28
  49. Lim, A. S., Jeong, H. J., Seong, K. A., Lee, M. J., Kang, N. S., Jang, S. H., Lee, K. H., Park, J. Y., Jang, T. Y. & Yoo, Y. D. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms. Algae 32:199-222.  https://doi.org/10.4490/algae.2017.32.8.25
  50. Liu, X., Liu, Y., Chai, Z., Hu, Z. & Tang, Y. Z. 2023. A combined approach detected novel species diversity and distribution of dinoflagellate cysts in the Yellow Sea, China. Mar. Pollut. Bull. 187:114567. 
  51. Liu, Y., Song, L., Song, G., Wu, J., Wang, K., Wang, Z. & Liu, S. 2022. Spatiotemporal distribution of size-fractioned phytoplankton in the Yalu River Estuary, China. Ecosyst. Health Sustain. 8:2133637. 
  52. Lowe, C. D., Keeling, P. J., Martin, L. E., Slamovits, C. H., Watts, P. C. & Montagnes, D. J. S. 2011. Who is Oxyrrhis marina? Morphological and phylogenetic studies on an unusual dinoflagellate. J. Plankton Res. 33:555-567.  https://doi.org/10.1093/plankt/fbq110
  53. Mason, P. L., Litaker, R. W., Jeong, H. J., Ha, J. H., Reece, K. S., Stokes, N. A., Park, J. Y., Steidinger, K. A., Vandersea, M. W., Kibler, S, Tester, P. A. & Vogelbein, W. K. 2007. Description of a new genus of Pfiesteria-like dinoflagellate, Luciella gen. nov. (Dinophyceae), including two new species: Luciella masanensis sp. nov. and Luciella atlantis sp. nov. J. Phycol. 43:799-810.  https://doi.org/10.1111/j.1529-8817.2007.00370.x
  54. Matsuyama, Y., Miyamoto, M. & Kotani, Y. 1999. Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum. Aquat. Microb. Ecol. 17:91-98.  https://doi.org/10.3354/ame017091
  55. Menden-Deuer, S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579.  https://doi.org/10.4319/lo.2000.45.3.0569
  56. Moreira-Gonzalez, A. R., Alonso-Hernandez, C. M., Arencibia-Carballo, G., Betanzos-Vega, A., Morton, S. L. & Richlen, M. L. 2021. First report of an Ansanella granifera bloom associated with eutrophication in Cuban waters, Caribbean region. Harmful Algae News 67:10-11. 
  57. Nakamura, Y., Suzuki, S. -Y. & Hiromi, J. 1995. Growth and grazing of a naked heterotrophic dinoflagellate, Gyrodinium dominans. Aquat. Microb. Ecol. 9:157-164.  https://doi.org/10.3354/ame009157
  58. Ok, J. H., Jeong, H. J., Kang, H. C., Park, S. A., Eom, S. H., You, J. H. & Lee, S. Y. 2021. Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates. Algae 36:263-283.  https://doi.org/10.4490/algae.2021.36.11.28
  59. Ok, J. H., Jeong, H. J., Lim, A. S. & Lee, K. H. 2017. Interactions between the mixotrophic dinoflagellate Takayama helix and common heterotrophic protists. Harmful Algae 68:178-191.  https://doi.org/10.1016/j.hal.2017.08.006
  60. Park, S. A., Jeong, H. J., Ok, J. H., Kang, H. C., You, J. H., Eom, S. H. & Park, E. C. 2021. Interactions between the kleptoplastidic dinoflagellate Shimiella gracilenta and several common heterotrophic protists. Front. Mar. Sci. 8:738547. 
  61. Pierce, R. W. & Turner, J. T. 1992. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6:139-181. 
  62. Potvin, E., Hwang, Y. J., Yoo, Y. D., Kim, J. S. & Jeong, H. J. 2013. Feeding by heterotrophic protists and copepods on the photosynthetic dinoflagellate Azadinium cf. poporum from western Korean waters. Aquat. Microb. Ecol. 68:143-158.  https://doi.org/10.3354/ame01603
  63. Pratomo, A., Bengen, D. G., Zamani, N. P., Lane, C., Humphries, A. T., Borbee, E., Subhan, B. & Madduppa, H. 2022. Diversity and distribution of Symbiodiniaceae detected on coral reefs of Lombok, Indonesia using environmental DNA metabarcoding. PeerJ 10:e14006. 
  64. Rene, A., Camp, J. & Garces, E. 2015. Diversity and phylogeny of Gymnodiniales (Dinophyceae) from the NW Mediterranean Sea revealed by a morphological and molecular approach. Protist 166:234-263.  https://doi.org/10.1016/j.protis.2015.03.001
  65. Rene, A., Timoneda, N., Sampedro, N., Alacid, E., Gallisai, R., Gordi, J., Fernandez-Valero, A. D., Pernice, M. C., Flo, E. & Garces, E. 2021. Host preferences of coexisting Perkinsea parasitoids during coastal dinoflagellate blooms. Mol. Ecol. 30:2417-2433.  https://doi.org/10.1111/mec.15895
  66. Sakamoto, S., Lim, W. A., Lu, D., Dai, X., Orlova, T. & Iwataki, M. 2021. Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia. Harmful Algae 102:101787. 
  67. Sampedro, N., Rene, A., Matos, J., Fortuno, J. -M. & Garces, E. 2022. Detection of the widespread presence of the genus Ansanella along the Catalan coast (NW Mediterranean Sea) and the description of Ansanella catalana sp. nov. (Dinophyceae). Eur. J. Phycol. 57:125-142.  https://doi.org/10.1080/09670262.2021.1914861
  68. Sherr, E. B. & Sherr, B. F. 2002. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293-308.  https://doi.org/10.1023/A:1020591307260
  69. Stern, R. F., Horak, A., Andrew, R. L., Coffroth, M. -A., Andersen, R. A., Kupper, F. C., Jameson, I., Hoppenrath, M., Veron, B., Kasai, F., Brand, J., James, E. R. & Keeling, P. J. 2010. Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS ONE 5:e13991. 
  70. Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x
  71. Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. 2017. Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9:311-335.  https://doi.org/10.1146/annurev-marine-010816-060617
  72. Strom, S. L. & Buskey, E. J. 1993. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38:965-977.  https://doi.org/10.4319/lo.1993.38.5.0965
  73. Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418.  https://doi.org/10.1007/s10531-007-9258-3
  74. Tillmann, U. & Hoppenrath, M. 2013. Life cycle of the pseudocolonial dinoflagellate Polykrikos kofoidii (Gymnodiniales, Dinoflagellata). J. Phycol. 49:298-317.  https://doi.org/10.1111/jpy.12037
  75. Watts, P. C., Martin, L. E., Kimmance, S. A., Montagnes, D. J. S. & Lowe, C. D. 2010. The distribution of Oxyrrhis marina: a global disperser or poorly characterized endemic? J. Plankton Res. 33:579-589. 
  76. Yoo, Y. D., Jeong, H. J., Kang, N. S., Kim, J. S., Kim, T. H. & Yoon, E. Y. 2010a. Ecology of Gymnodinium aureolum. II. Predation by common heterotrophic dinoflagellates and a ciliate. Aquat. Microb. Ecol. 59:257-272.  https://doi.org/10.3354/ame01401
  77. Yoo, Y. D., Jeong, H. J., Kang, N. S., Song, J. Y., Kim, K. Y., Lee, G. & Kim, J. 2010b. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol. 57:145-158.  https://doi.org/10.1111/j.1550-7408.2009.00448.x
  78. Yoo, Y. D., Jeong, H. J., Kim, J. S., Kim, T. H., Kim, J. H., Seong, K. A., Lee, S. H., Kang, N. S., Park, J. W., Park, J., Yoon, E. Y. & Yih, W. H. 2013a. Red tides in Masan Bay, Korea in 2004-2005: II. daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101.  https://doi.org/10.1016/j.hal.2013.10.009
  79. Yoo, Y. D., Yoon, E. Y., Lee, K. H., Kang, N. S. & Jeong, H. J. 2013b. Growth and ingestion rates of heterotrophic dinoflagellates and a ciliate on the mixotrophic dinoflagellate Biecheleria cincta. Algae 28:343-354.  https://doi.org/10.4490/algae.2013.28.4.343
  80. You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78.  https://doi.org/10.4490/algae.2020.35.2.28