DOI QR코드

DOI QR Code

The description of Haematococcus privus sp. nov. (Chlorophyceae, Chlamydomonadales) from North America

  • Mark A. Buchheim (Department of Biological Science, The University of Tulsa) ;
  • Ashley Silver (Department of Biological Science, The University of Tulsa) ;
  • Haley Johnson (Department of Biological Science, The University of Tulsa) ;
  • Richard Portman (Department of Biological Science, The University of Tulsa) ;
  • Matthew B. Toomey (Department of Biological Science, The University of Tulsa)
  • Received : 2022.09.17
  • Accepted : 2023.03.09
  • Published : 2023.03.15

Abstract

An enormous body of research is focused on finding ways to commercialize carotenoids produced by the unicellular green alga, Haematococcus, often without the benefit of a sound phylogenetic assessment. Evidence of cryptic diversity in the genus means that comparing results of pigment studies may be confounded by the absence of a phylogenetic framework. Moreover, previous work has identified unnamed strains that are likely candidates for species status. We reconstructed the phylogeny of an expanded sampling of Haematococcus isolates utilizing data from nuclear ribosomal markers (18S rRNA gene, 26S rRNA gene, internal transcribed spacer [ITS]-1, 5.8S rRNA gene, and ITS-2) and the rbcL gene. In addition, we gathered morphological, ultrastructural and pigment data from key isolates of Haematococcus. Our expanded data and taxon sampling support the concept of a new species, H. privus, found exclusively in North America. Despite overlap in numerous morphological traits, results indicate that ratios of protoplast length to width and akinete diameter may be useful for discriminating Haematococcus lineages. High growth rate and robust astaxanthin yield indicate that H. rubicundus (SAG 34-1c) is worthy of additional scrutiny as a pigment source. With the description of H. privus, the evidence supports the existence of at least five, species-level lineages in the genus. Our phylogenetic assessment provides the tools to frame future pigment investigations of Haematococcus in an updated evolutionary context. In addition, our investigation highlighted open questions regarding polyploidy and sexuality in Haematococcus which demonstrate that much remains to be discovered about this green flagellate.

Keywords

Acknowledgement

The authors wish to thank Ian Bellovich, Claire Chapman, Karina Cunningham, Marwa Elsayed, Michaelyn Everitt, Anna-Maria Malati, Ashley Lam, Chukwunonso Nwakoby, Kelsey Parks, Caitlin Pegg and Sydney Sullivan who assisted with DNA extraction, PCR and microscopy. The authors acknowledge support from the Oklahoma Center for the Advancement of Science and Technology (PS20-021: Bioprospecting Oklahoma's Algal Diversity For High Value Products).

References

  1. Ahirwar, A., Meignen, G., Khan, M. J., Sirotiya, V., Harish, Scarsini, M., Roux, S., Marchand, J., Schoefs, B. & Vinayak, V. 2021. Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: a review. Bioresour. Technol. 340:125707. 
  2. Alanagreh, L., Pegg, C., Harikumar, A. & Buchheim, M. 2017. Assessing intragenomic variation of the internal transcribed spacer two: adapting the Illumina megagenomics protocol. PLoS ONE 12:e0181491. 
  3. Allewaert, C. C., Vanormelingen, P., Daveloose, I., Verstraete, T. & Vyverman, W. 2017. Intraspecific trait variation affecting astaxanthin productivity in two Haematococcus (Chlorophyceae) species. Algal Res. 21:191-202.  https://doi.org/10.1016/j.algal.2016.10.021
  4. Allewaert, C. C., Vanormelingen, P., Proschold, T., Gomez, P. I., Gonzalez, M. A., Bilcke, G., D'Hondt, S. & Vyverman, W. 2015. Species diversity in European Haematococcus pluvialis (Chloophyceae, Volvocales). Phycologia 54:583-598.  https://doi.org/10.2216/15-55.1
  5. Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J. & Forster, F. 2015. ITS2 database V: twice as much. Mol. Biol. Evol. 32:3030-3032. https://doi.org/10.1093/molbev/msv174
  6. Ashokkumar, V., Chen, W. -H., Kumar, G., Satjarak, A., Chanthapatchot, W. & Ngamcharussrivichai, C. 2021. A biorefinery approach for high value-added bio-product (astaxanthin) from alga Haematococcus sp. and residue pyrolysis for biochar synthesis and metallic iron production from hematite (Fe2O3). Fuel 304:121150. 
  7. Bai, N. J., Nair, B. B. & Shashirekha, V. 2016. Biology of growth conditions, nutrition and biomass development in Haematococcus pluvialis, Haematococcaceae, Chlorophyceae. Phykos 46:64-70. 
  8. Bauman, N., Akella, S., Hann, E., Morey, R., Schwartz, A. S., Brown, R. & Richardson, T. H. 2018. Next-generation sequencing of Haematococcus lacustris reveals an extremely large 1.35-megabse chloroplast genome. Genome Announc. 6:e00181-18. 
  9. Bowen, W. R. 1964. Ultrastructural aspects of the cell boundary of Haematococcus pluvialis. Trans. Am. Microsc. Soc. 86:36-43.  https://doi.org/10.2307/3224422
  10. Buchheim, M. A., Kirkwood, A. E., Buchheim, J. A., Verghese, B. & Henley, W. J. 2010. Hypersaline soil supports a diverse community of Dunaliella (Chlorophyceae). J. Phycol. 46:1038-1047.  https://doi.org/10.1111/j.1529-8817.2010.00886.x
  11. Buchheim, M. A., Michalopulos, E. A. & Buchheim,J. A. 2001. Phylogeny of the Chlorophyceae with special reference to the Sphaeropleales: a study of 18S and 26S rDNA data. J. Phycol. 37:819-835.  https://doi.org/10.1046/j.1529-8817.2001.00162.x
  12. Buchheim, M. A., Sutherland, D. M., Buchheim, J. A. & Wolf, M. 2013. The blood alga: phylogeny of Haematococcus (Chlorophyceae) inferred from ribosomal RNA gene sequence data. Eur. J. Phycol. 48:318-329.  https://doi.org/10.1080/09670262.2013.830344
  13. Buchheim, M., Buchheim, J., Carlson, T., Braband, A., Hepperle, D., Krienitz, L., Wolf, M. & Hegewald, E. 2005. Phylogeny of the Hydrodictyaceae (Chlorophyceae): inferences from rDNA data. J. Phycol. 41:1039-1054.  https://doi.org/10.1111/j.1529-8817.2005.00129.x
  14. Chekanov, K., Fedorenko, T., Kublanovskaya, A., Litvinov, D. & Lobakova, E. 2020. Diversity of carotenogenic microalgae in the White Sea polar region. FEMS Microbiol. Ecol. 96:fiz183. 
  15. Chelebieva, E. S., Dantsyuk, N. V., Chekanov, K. A., Chubchikova, I. N., Drobetskaya, I. V., Minyuk, G. S., Lobakova, E. S. & Solovchenko, A. E. 2018. Identification and morphological-physiological characterization of astaxanthin produce strains of Haematococcus pluvialis from the Black Sea region. Appl. Biochem Microbiol. 54:639-648.  https://doi.org/10.1134/S0003683818060078
  16. Damiani, M. C., Leonardi, P. L., Pieroni, O. E. & Caceres, E. J. 2006. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616-623.  https://doi.org/10.2216/05-27.1
  17. Droop, M. R. 1956. Haematococcus pluvialis and its allies. I. The Sphaerellaceae. Rev. Algol. 2:53-71. 
  18. Du, F., Hu, C., Sun, X., Zhang, L. & Xu, N. 2021. Transcriptome analysis reveals the promoting effect of trisodium citrate on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture 543:736978. 
  19. Edgar, R. C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. 
  20. Elliott, A. M. 1934. Morphology and life history of Haematococcus pluvialis. Arch. Protistenkd. 82:250-272. 
  21. Fang, H., Zhuang, Z., Huang, L., Niu, J. & Zhao, W. 2022. A newly isolated strain of Haematococcus pluvialis GXUA23 improves the growth performance, antioxidant and anti-inflammatory status, metabolic capacity and midintestine morphology of juvenile Litopenaeus vannamei. Front. Physiol. 13:882091. 
  22. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.  https://doi.org/10.2307/2408678
  23. Flot, J. -F., Hespeels, B., Li, X., Noel, B., Arkhipova, I., Danchin, E. G. J., Hejnol, A., Henrissat, B., Koszul, R., Aury, J. -M., Barbe, V., Barthelemy, R. -M., Bast, J., Bazykin, G. A., Chabrol, O., Couloux, A., Da Rocha, M., Da Silva, C., Gladyshev, E., Gouret, P., Hallatschek, O., Hecox-Lea, B., Labadie, K., Lejeune, B., Piskurek, O., Poulain, J., Rodriguez, F., Ryan, J. F., Vakhrusheva, O. A., Wajnberg, E., Wirth, B., Yushenova, I., Kellis, M., Kondrashov, A. S., Welch, D. B. M., Pontarotti, P., Weissenbach, J., Wincker, P., Jaillon, O. & Van Doninck, K. 2013. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500:453-457.  https://doi.org/10.1038/nature12326
  24. Gomez, P. I., Haro, P., Lagos, P., Palacios, Y., Torres, J., Saez, K., Castro, P., Gonzalez, V., Inostroza, I. & Gonzalez, M. A. 2016. Intraspecific variability among Chilean strains of the astaxanthin-producing microalga Haematococcus pluvialis (Chlorophyta): an opportunity for its genetic improvement by simple selection. J. Appl. Phycol. 28:2115-2122.  https://doi.org/10.1007/s10811-015-0777-0
  25. Gonzalez, M. A., Cifuentes, A. S. & Gomez, P. I. 2009. Growth and total carotenoid content in four Chilean strains of Haematococcus pluvialis Flotow, under laboratory conditions. Gayana Bot. 66:58-70.  https://doi.org/10.4067/S0717-66432009000100006
  26. Guo, H., Li, T., Zhao, Y. & Yu, X. 2021. Role of copper in the enhancement of astaxanthin and lipid coaccumulation in Haematococcus pluvialis exposed to abiotic stress conditions. Bioresour. Technol. 335:125265. 
  27. Harris, E. 2009. The Chlamydomonas sourcebook. Vol. I. Introduction to Chlamydomonas and its laboratory use. 2nd ed. Academic Press, Amsterdam, 444 pp. 
  28. Hazen, T. E. 1899. The life history of Sphaerella lacustris (Haematococcus pluvialis). Mem. Torrey Bot. Club 6:211-246.
  29. Herrick, F. H. 1899. On Haematococcus. Science 9:319-320. 
  30. Karuppan, R., Javee, A., Gopidas, S. K., Pathmanapan, A., Kattusamy, K., Narayanan, V., Subramanian, S. R. & SubramanI, N. 2022. Impact of cultivation parameters on astaxanthin accumulation in the green alga Haematococcus lacustris RRGK isolated from Himachal Pradesh, India. Energy Nexus 6:100083. 
  31. Kim, B., Lee, S. Y., Narasimhan, A. L., Kim, S. & Oh, Y. -K. 2022. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: recent advances. Bioresour. Technol. 343:126124. 
  32. Kim, J. H., Affan, A., Jang, J., Kang, M. -H., Ko, A. -R., Jeon, S. -M., Oh, C., Heo, S. -J., Lee, Y. -H., Ju, S. -J. & Kang, D.-H. 2015. Morphological, molecular, and biochemical characterization of astaxanthin-producing green microalga Haematococcus sp. KORDI03 (Haematococcaceae, Chlorophyta) isolated from Korea. J. Microbiol. Biotechnol. 25:238-246.  https://doi.org/10.4014/jmb.1410.10032
  33. Kim, T. Y., Lee, S. -H. & Lee, S. -Y. 2021. Two newly identified Haematococcus strains efficiently accumulated radioactive cesium over higher astaxanthin production. Environ. Res. 199:111301. 
  34. Klochkova, T. A., Kwak, M. S., Han, J. W., Motomura, T., Nagasato, C. & Kim, G. H. 2013. Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvoya (Svalbard). Algae 28:185-192.  https://doi.org/10.4490/algae.2013.28.2.185
  35. Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874.  https://doi.org/10.1093/molbev/msw054
  36. Lee, Y. -K. & Ding, S. -Y. 1994. Cell cycle and accumulation of astaxanthin in Haemtaococcus lacustris (Chlorophyta). J. Phycol. 30:445-449.  https://doi.org/10.1111/j.0022-3646.1994.00445.x
  37. Maciver, S. K. 2016. Asexual amoebae escape Muller's ratchet through polyploidy. Trends Parasitol. 32:855-862.  https://doi.org/10.1016/j.pt.2016.08.006
  38. Maddison, W. P. & Maddison, D. R. 2019. Mesquite: a modular system for evolutionary analysis. Version 3.61. Available from: http://www.mesquiteproject.org. Accessed Sep 17, 2022. 
  39. Mann Whitney U test calculator, Statistics Kingdom. 2017. Available from: http://www.statskingdom.com/170median_mann_whitney.html. Accessed Sep 17, 2022. 
  40. Mazumdar, N., Gopalakrishnan, K. K., Visnovsky, G. & Novis, P. M. 2018. A novel alpine species of Haematococcus (Chlamydomonadales: Chlorophyta) from New Zealand. N. Z. J. Bot. 56:216-226.  https://doi.org/10.1080/0028825X.2018.1458737
  41. McCracken, D. A., Nadakavukaren, M. J. & Cain, J. R. 1980. A biochemical and ultrastructural evaluation of the taxonomic position of Glaucosphaera pplanate Korsh. New Phytol. 86:39-44. 
  42. Mota, G. C. P., de Moraes, L. B. S., Oliveira, C. Y. B., Oliveira, D. W. S., de Abreu, J. L., Dantas, D. M. M. & Galvez, A. O. 2022. Astaxanthin from Haematococcus pluvialis: process, applications, and market. Prep. Biochem. Biotechnol. 52:598-609.  https://doi.org/10.1080/10826068.2021.1966802
  43. Muller, H. J. 1932. Some genetic aspects of sex. Am. Nat. 66:118-138.  https://doi.org/10.1086/280418
  44. Munakata, H., Nakada, T., Nakahigashi, K., Nozaki, H. & Tomita, M. 2016. Phylogenetic position and molecular chronology of a colonial green flagellate, Stephanosphaera pluvialis (Volvocales, Chlorophyceae), among unicellular algae. J. Eukaryot. Microbiol. 63:340-348.  https://doi.org/10.1111/jeu.12283
  45. Nakada, T., Misawa, K. & Nozaki, H. 2008. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 48:281-291.  https://doi.org/10.1016/j.ympev.2008.03.016
  46. Nakada, T. & Ota, S. 2016. What is the correct name for the type of Haematococcus Flot. (Volvocales, Chlorophyceae)? Taxon 65:343-348.  https://doi.org/10.12705/652.11
  47. Nozaki, H., Itoh, M., Uchida, H., Watanabe, M. M. & Kuroiwa, T. 1995. Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. J. Phycol. 31:970-979.  https://doi.org/10.1111/j.0022-3646.1995.00970.x
  48. Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., Oslan, S. N., Armugam, K., Ariff, A. B., Sulaiman, A. Z. & Mohamed, M. S. 2021. A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules 11:256. 
  49. Peebles, F. 1909. The life history of Sphaerella lacustris (Haematococcus pluvialis), with especial reference to the nature and behaviour of the zoospores. Zentralblatt Bakteriol. Jena Abt. II 24:511-521. 
  50. Pegg, C., Wolf, M., Alanagreh, L., Portman, R. & Buchheim, M. A. 2015. Morphological diversity masks phylogenetic similarity of Ettlia and Haematococcus (Chlorophyceae). Phycologia 54:385-397.  https://doi.org/10.2216/15-015.1
  51. Pocock, M. A. 1960. Haematococcus in southern Africa. Trans. R. Soc. S. Afr. 36:5-55.  https://doi.org/10.1080/00359196009519031
  52. Reinicke, D. L., Castillo-Flores, A., Boussiba, S. & Zarka, A. 2018. Polyploid polynuclear consecutive cell-cycle enables large genome-size in Haematococcus pluvialis. Algal Res. 33:456-461.  https://doi.org/10.1016/j.algal.2018.06.013
  53. Ringo, D. L. 1967. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell Biol. 33:543-571.  https://doi.org/10.1083/jcb.33.3.543
  54. Rizzo, A., Ross, M. E., Norici, A. & Jesus, B. 2022. A two-step process for improved biomass production and non-destructive astaxanthin and carotenoids accumulation in Haematococcus pluvialis. Appl. Sci. 12:1261. 
  55. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542.  https://doi.org/10.1093/sysbio/sys029
  56. Santos, M. F. & Mesquita, J. F. 1984. Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales) I. Some aspects of carotenogenesis. Cytologia 49:215-228.  https://doi.org/10.1508/cytologia.49.215
  57. Schulze, B. 1927. Zur Kentniss einiger Volvocales (Chlorogonium, Haematococcus, Stephanosphaera, Spondylomoraceae und Chlorobrachis). Arch. Protistenkd. 58: 508-576. 
  58. Shapiro Wilk Test calculator, Statistics Kingdom. 2017. Available from: https://www.statskingdom.com/doc_shapiro_wilk.html. Accessed Sep 17, 2022. 
  59. Smith, D. R. 2018. Haematococcus lacustris: the makings of a giant-sized chloroplast genome. AoB Plants 10:ply058. 
  60. Swofford, D. L. 2003. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA. 
  61. Triki, A., Maillard, P. & Gudin, C. 1997. Gametogenesis in Haematococcus pluvialis Flotow (Volvocales, Chlorophyta). Phycologia 36:190-194.  https://doi.org/10.2216/i0031-8884-36-3-190.1
  62. Wang, F., Guo, B., Wu, M., Huang, L. & Zhang, C. 2019. A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Res. 39:101466 
  63. Wilcoxon Signed-Ranks test calculator, Statistics Kingdom 2017. Available from: https://www.socscistatistics.com/tests/signedranks/default2.aspx. Accessed Sep 17, 2022. 
  64. Yu, C., Wang, H. -P., Qiao, T., Zhao, Y. & Yu, X. 2021. A fed-batch feeding with succinic acid strategy of astaxanthin and lipid hyper-production in Haematococcus pluvialis. Bioresour. Technol. 340:125648.