DOI QR코드

DOI QR Code

Immunogenicity of the ChAdOx1 nCoV-19 vaccine in patients with hematologic malignancies

  • Chayapa Thookhamme (Department of Hematology, Chulabhorn Hospital) ;
  • Manassamon Navinpipat (Department of Hematology, Chulabhorn Hospital) ;
  • Aimwipa Sasakul (Department of Hematology, Chulabhorn Hospital) ;
  • Pakthipa Pattarakosol (Department of Hematology, Chulabhorn Hospital) ;
  • Kamoltip Lertchaisataporn (Department of Hematology, Chulabhorn Hospital) ;
  • Kriangkrai Tawinprai (Infectious Disease Unit, Department of Medicine, Chulabhorn Hospital) ;
  • Pannee Praditsuktavorn (Department of Hematology, Chulabhorn Hospital)
  • Received : 2022.08.06
  • Accepted : 2023.03.31
  • Published : 2023.04.30

Abstract

Purpose: The present study aimed to study the immunogenicity of the ChAdOx1 nCoV-19 vaccine in patients with hematologic malignancies. Materials and Methods: This prospective cohort study of hematology patients aimed to evaluate their antibody levels against the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein and seroconversion rates following two doses of the ChAdOx1 nCoV-19 vaccine. Between June and July 2021, we enrolled 61 patients and included 44 patients in our analysis. Antibody levels were assessed 8 and 4 weeks after the first and second injections, respectively, and compared with those of a healthy group. Results: Eight weeks after the first dose, the geometric mean antibody level was 1.02 binding antibody units (BAU)/mL in the patient group and 37.91 BAU/mL in the healthy volunteer group (p<0.01). Four weeks after the second dose, the geometric mean antibody level was 9.44 BAU/mL in patients and 641.6 BAU/mL in healthy volunteers (p<0.01). The seroconversion rates 8 weeks after the first dose were 27.27% and 98.86% in the patient and healthy volunteer groups, respectively (p<0.001). The seroconversion rate 4 weeks after the second dose was 47.73% in patients and 100% in healthy volunteers. Factors leading to lower seroconversion rates were rituximab therapy (p=0.002), steroid therapy (p<0.001), and ongoing chemotherapy (p=0.048). Factors that decreased antibody levels were hematologic cancer (p<0.001), ongoing chemotherapy (p=0.004), rituximab (p<0.001), steroid use (p<0.001), and absolute lymphocyte count <1,000/mm3 (p=0.009). Conclusion: Immune responses were impaired in individuals with hematologic malignancies, particularly patients undergoing ongoing therapy and B-cell-depleting therapy. Additional vaccinations should be considered for these patients, and further investigated.

Keywords

References

  1. World Health Organization. WHO coronavirus (COVID-19) dashboard [Internet]. Geneva: World Health Organization; 2022 [cited 2023 Mar 10]. Available from: https://covid19.who.int 
  2. Pagano L, Salmanton-Garcia J, Marchesi F, et al. COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA). J Hematol Oncol 2021;14:168. 
  3. Falsey AR, Sobieszczyk ME, Hirsch I, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 vaccine. N Engl J Med 2021;385:2348-60. 
  4. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020;383:2603-15. 
  5. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403-16. 
  6. Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med 2021;384:2187-201. 
  7. Thakkar A, Gonzalez-Lugo JD, Goradia N, et al. Seroconversion rates following COVID-19 vaccination among patients with cancer. Cancer Cell 2021;39:1081-90. 
  8. Addeo A, Shah PK, Bordry N, et al. Immunogenicity of SARS-CoV-2 messenger RNA vaccines in patients with cancer. Cancer Cell 2021;39:1091-8. 
  9. Agha ME, Blake M, Chilleo C, Wells A, Haidar G. Suboptimal response to coronavirus disease 2019 messenger RNA vaccines in patients with hematologic malignancies: a need for vigilance in the postmasking era. Open Forum Infect Dis 2021;8:ofab353. 
  10. Greenberger LM, Saltzman LA, Senefeld JW, Johnson PW, DeGennaro LJ, Nichols GL. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell 2021;39:1031-3. 
  11. Ollila TA, Lu S, Masel R, et al. Antibody response to COVID-19 vaccination in adults with hematologic malignant disease. JAMA Oncol 2021;7:1714-6. 
  12. Malard F, Gaugler B, Gozlan J, et al. Weak immunogenicity of SARS-CoV-2 vaccine in patients with hematologic malignancies. Blood Cancer J 2021;11:142. 
  13. Teh JS, Coussement J, Neoh ZC, et al. Immunogenicity of COVID-19 vaccines in patients with hematologic malignancies: a systematic review and meta-analysis. Blood Adv 2022;6:2014-34. 
  14. Naranbhai V, Pernat CA, Gavralidis A, et al. Immunogenicity and reactogenicity of SARS-CoV-2 vaccines in patients with cancer: the CANVAX cohort study. J Clin Oncol 2022;40:12-23. 
  15. Kristiansen PA, Page M, Bernasconi V, et al. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 2021;397:1347-8. 
  16. Resman Rus K, Korva M, Knap N, Avsic Zupanc T, Poljak M. Performance of the rapid high-throughput automated electrochemiluminescence immunoassay targeting total antibodies to the SARS-CoV-2 spike protein receptor binding domain in comparison to the neutralization assay. J Clin Virol 2021;139:104820.