DOI QR코드

DOI QR Code

무인기를 이용한 이탈리안 라이그라스의 파종계절별 식생지수 비교

Comparative Analysis of Italian Ryegrass Vegetation Indices across Different Sowing Seasons Using Unmanned Aerial Vehicles

  • 투고 : 2023.06.21
  • 심사 : 2023.06.27
  • 발행 : 2023.06.30

초록

본 연구는 드론의 초분광장치를 이용하여 이탈리안 라이그라스 생육기간 중의 파종계절에 따른 식생지수 변화 및 생산성을 조사하였다. 수량성을 조사한 결과, 봄파종구의 건물수량이 가을파종구의 약 52%였으며 초장은 유의적으로 차이가 없었다. 식생지수를 산정하여 연속적인 패턴을 분석한 결과, 가을파종구의 대부분 식생지수가 시간이 지날수록 낮아지며, 봄파종구는 높아지는 유형을 보였으나 RGRI는 반대의 유형을 나타냈다. 재배기간에 따른 가을파종구의 건물수량과 RGRI의 상관성이 높았다.

Due to the recent impact of global warming, heavy rainfall and droughts have been occurring regardless of the season, affecting the growth of Italian ryegrass (IRG), a winter forage crop. Particularly, delayed sowing due to frequent heavy rainfall or autumn droughts leads to poor growth and reduced winter survival rates. Therefore, techniques to improve yield through additional sowing in spring have been implemented. In this study, the growth of IRG sown in Spring and Autumn was compared and analyzed using vegetation indices during the months of April and May. Spectral data was collected using an Unmanned Aerial Vehicle (UAV) equipped with a hyperspectral sensor, and the following vegetation indices were utilized: Normalized Difference Vegetation Index; NDVI, Normalized Difference Red Edge Index; NDRE (I), Chlorophyll Index, Red Green Ratio Index; RGRI, Enhanced Vegetation Index; EVI and Carotenoid Reflectance Index 1; CRI1. Indices related to chlorophyll concentration exhibited similar trends. RGRI of IRG sown in autumn increased during the experimental period, while IRG sown in spring showed a decreasing trend. The results of RGRI in IRG indicated differences in optical characteristics by sowing seasons compared to the other vegetation indices. Our findings showed that the timing of sowing influences the optical growth characteristics of crops by the results of various vegetation indices presented in this study. Further research, including the development of optimal vegetation indices related to IRG growth, is necessary in the future.

키워드

과제정보

본 연구는 농촌진흥청 공동연구개발사업(과제명: 드론 이용 동계사료작물의 정밀재배 및 초지조성 관리기술 개발, 과제번호: PJ014123012021)의 지원에 의해 수행되었습니다.

참고문헌

  1. Gamon, J. and Surfus, J. 1999. Assessing leaf pigment content and activity with a reflectometer. New Phytologist. 143:105-117. doi:10.1007/s11119-008-9075-z
  2. Gitelson, A. and Merzlyak, M. 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology. 13:247-252. doi:10.1016/1011-1344(93)06963-4
  3. Gitelson, A., Zur, Y., Chivkunova, O. and Merzlyak, M. 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology. 75:272-281. https://doi.org/10.1562/0031-8655(2002)075<0272:ACCIPL>2.0.CO;2
  4. Gu, Y., Wylie, B., Howard, D., Phyyal, K. and Ji, L. 2013. NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecological Indicators. 30:1-6. https://doi.org/10.1016/j.ecolind.2013.01.041
  5. Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X. and Ferreira, L. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 83:195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
  6. Korea Rural Economic Institute. 2014. Statistical survey technique development and application method. pp. 1-65.
  7. Lee, B.O., Yoo, J.W., Yang, J.H. and Jin, C.Z. 2016. Strategies for the value innovation of agriculture in Korea. Journal of Agricultural, Life and Environment Sciences. 28:43-51.
  8. Lee, C., Umeda, M., Jung, I., Sung, J., Kim, S., Park, W. and Lee, B. 2004. Spatial variability analysis of paddy rice yield in field. Journal of Biosystems Engineering. 29:267-274. https://doi.org/10.5307/JBE.2004.29.3.267
  9. Na, S.I., Park, C.W., So, K.H., Ahn, H.Y. and Lee, K.D. 2019. Photochemical Reflectance Index (PRI) mapping using drone-based hyperspectral image for evaluation of crop stress and its application to multispectral imagery. Korean Journal of Remote Sensing. 35:637-647. doi:10.7780/kjrs.2019.35.5.1.2
  10. NIPA. 2017. ICT convergence in-depth report. pp. 1-5.
  11. Rouse, J., Haas, R., Schell, J. and Deering, D. 1973. Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium. NASA. pp. 309-317.
  12. Shin, J.Y., Lee, J.M., Yang, S.H., Lim, K.J. and Lee, H.J. 2020. Selection of optimal vegetation indices for predicting winter crop dry matter based on unmanned aerial vehicle. Journal of the Korean Society of Grassland and Forage Science. 40:196-202. doi:10.5333/KGFS.2020.40.4.196
  13. Torres-Sanchez, J., Pena, J.M., De Castro, A.I. and Lopez-Granados, F. 2014. Multi-temporal mapping of the vegetation fraction in early season wheat fields using images from UAV. Computers and Electronics in Agriculture. 103:104-113. https://doi.org/10.1016/j.compag.2014.02.009
  14. Vincini, M., Frazzi, E. and Alessio, P. 2008. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture. 9:303-319. https://doi.org/10.1007/s11119-008-9075-z
  15. Xiang, H. and Tian, L. 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering. 108(2):174-190. https://doi.org/10.1016/j.biosystemseng.2010.11.010