DOI QR코드

DOI QR Code

Changes in Antioxidant Enzyme Activities of Two Contrasting Ecotypes of Arundinella hirta to Drought Stress

  • Chang Woo Min (Department of Animal Bioscience, Division of Applied Life Science (BK21), IALS, Gyeongsang National University) ;
  • Yun-Hee Kim (Department of Biology Education, IALS, Gyeongsang National University) ;
  • Byung-Hyun Lee (Department of Animal Bioscience, Division of Applied Life Science (BK21), IALS, Gyeongsang National University)
  • Received : 2023.03.27
  • Accepted : 2023.06.22
  • Published : 2023.06.30

Abstract

To understand antioxidant enzyme response of two contrasting Arundinella hirta ecotypes to drought stress, drought-tolerant Youngduk and drought-sensitive Jinju-1, were comparatively analyzed changes in the enzymatic activities of peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR). Two ecotypes, drought-tolerant Youngduk and drought-sensitive Jinju-1 were subjected to drought stress by withholding water for 12 days. ROS accumulation level and electrolytic leakage were significantly increased in both A. hirta ecotypes by drought stress treatment but less in Youngduk than Jinju-1. The RWC significantly decreased in both the drought stress-treated ecotypes as compared to control, but less in Youngduk than Jinju-1. Soluble sugar and protein content were increased more in drought stress-treated Youngduk as compared to Jinju-1. The activities of antioxidant enzymes such as SOD, CAT, POD, APX, and GR increased significantly in both the drought stress-treated ecotypes Youngduk and Jinju-1 as compared to control. The increase in antioxidant enzyme activity level was more prominent in drought stress-treated Youngduk as compared to Jinju-1. Taken together, these results suggest that Youngduk was more tolerant to drought stress than Jinju-1, and seem to indicate that tolerance of A. hirta to drought stress is associated with increased activity of antioxidant enzymes.

Keywords

Acknowledgement

The authors express their heartfelt gratitude to Inam Khan for his dedicated assistance to this experiment.

References

  1. Aebi, H. 1984. Catalase in vitro. In: L. Packer (Ed.), Methods in enzymology Vol. 105. Academic Press. San Diego. USA. pp. 121-126.
  2. Akitha-Devi, M.K. and Giridhar, P. 2015. Variations in physiological response, lipid peroxidation, antioxidant enzyme activities, proline, and isoflavones content in soybean varieties subjected to drought stress. Proceedings of the National Academy of Sciences. India Section B: Biological Sciences. 85:35-44. https://doi.org/10.1007/s40011-013-0244-0
  3. Ali, M.B., Welna, G.C., Sallam, A., Martsch, R., Balko, C., Gebser, B., Sass, O. and Link, W. 2016. Association analyses to genetically improve drought and freezing tolerance of faba bean (Vicia faba L.). Crop Science. 56(3):1036-1048. https://doi.org/10.2135/cropsci2015.08.0503
  4. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry. 44(1):276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  5. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Chakhchar, A., Lamaoui, M., Aissam, S., Ferradous, A., Wahbi, S., El Mousadik, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A. and El Modafar, C. 2016. Differential physiological and antioxidative responses to drought stress and recovery among four contrasting Argania spinosa ecotypes. Journal of Plant Interactions. 11(1):30-40. https://doi.org/10.1080/17429145.2016.1148204
  7. Chen, J., Yang, L., Li S. and Ding, W. 2018. Various physiological response to graphene oxide and amine-functionalized graphene oxide in wheat (Triticum aestivum). MDPI, Molecules. 23:1104. doi:10.3390/molecules23051104
  8. Chen, Z., Wang, Z., Yang, Y., Li, M. and Xu, B. 2018. Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae. 228:1-9. https://doi.org/10.1016/j.scienta.2017.10.004
  9. Choudhury, F.K., Rivero, R.M., Blumwald, E. and Mittler, R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal. 90(5):856-867. https://doi.org/10.1111/tpj.13299
  10. Couee, V., Sulmon, C., Gouesbet, G. and Amrani, A.E.I. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany. 57:449-459. https://doi.org/10.1093/jxb/erj027
  11. Fan, H.F., Ding, L., Du, C.X. and Wu, X. 2014. Effect of short-term water deficit stress on antioxidative systems in cucumber seedling roots. Botanical Studies. 55:46.
  12. Gill, S.S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12):909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  13. Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E. and Fodor, J. 2017. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions. Physiologia Plantarum. 163(2):155-169.
  14. Halliwell, B., Grootveld, M. and Gutteridge, J.M. 1988. Methods for the measurement of hydroxyl radicals in biochemical systems: Deoxyribose degradation and aromatic hydroxylation. Methods of Biochemical Analysis. 33:59-90. https://doi.org/10.1002/9780470110546.ch2
  15. Howarth, C.J. 2005. Genetic improvements of tolerance to high temperature. In: M. Ashraf and P.J.C. Harris (Eds.), Abiotic stresses: Plant resistance through breeding and molecular approaches. Howarth Press Inc. New York. pp. 277-300.
  16. Hu, M.Y., Shi, Z.G., Zhang, Z.B., Zhang, Y.J. and Li, H. 2012. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regulation. 68:177-188. https://doi.org/10.1007/s10725-012-9705-3
  17. Irigoyen, J.J., Eimerich, D.W. and Sanchez-Diaz, M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum. 84(1):55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
  18. Keunen, E., Peshev, D., Vangronsveld, J., Ende, W.V.D. and Cuypers, A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell Environment. 36:1242-1255. https://doi.org/10.1111/pce.12061
  19. Khan, I., Min, C.W. and Lee, B.H. 2019. Physiological and biochemical responses of local Arundinella hirta collections in Korea against drought stress. Journal of the Korean Society of Grassland and Forage Science. 39(1):39-44. https://doi.org/10.5333/KGFS.2019.39.1.39
  20. Kwak, S.S., Kim, S.k., Lee, M.S., Jung, K.H., Park, I.H. and Liu, J.R. 1995. Acidic peroxidases from suspension-cultures of sweet potato. Phytochemistry. 39(5):981-984. https://doi.org/10.1016/0031-9422(95)00098-R
  21. Li, C., Li, H. and Yang, Y. 2015. Dynamics of module structures on Arundinella hirta populations in Songnen plains of China. Acta Ecologica Sinica. 2015-08.
  22. Liu, Y., BAI, L. and Lei, J.J. 2016. Photosynthetic responses of Arundinella hirta populations to light intensity and CO2 concentration. Acta Prataculturae Sinica. 25(1):254-261.
  23. Marcos, F.C., Silveira, N.M., Mokochinski, J.B., Sawaya, A.C., Marchiori, P.E., Machado, E.C., Souza, G.M., Landell, M.G.A. and Ribeiro, R.V. 2018. Drought tolerance of sugarcane is improved by previous exposure to water deficit. Journal of Plant Physiology. 223:9-18. https://doi.org/10.1016/j.jplph.2018.02.001
  24. Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology. 22(5):867-880.
  25. Quan, R., Shang, M., Zhang, H., Zhao Y. and Zhang, J. 2004. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal. 2(6):477-486. https://doi.org/10.1111/j.1467-7652.2004.00093.x
  26. Rosa, M., Prado, C., Podazza, G., Interdonato, R., Gonzalez, J.A., Hilal, M. and Prado, F.E. 2009. Soluble sugars-metabolism, sensing, and abiotic stress: A complex network in the life of plants. Plant Signaling and Behavior. 4(5):388-393. https://doi.org/10.4161/psb.4.5.8294
  27. Smart, R.E. and Bingham, G.E. 1974. Rapid estimates of relative water content. Plant Physiology. 53(2):258-260. https://doi.org/10.1104/pp.53.2.258
  28. Smith, I.K., Vierheller, T.L. and Throne, C.A. 1988. Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis (2-nitrobenzoic acid). Analytical Biochemistry. 175(2):408-413. https://doi.org/10.1016/0003-2697(88)90564-7
  29. Turkan, I., Bor, M., Ozdemir, F. and Koca, H. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris subjected to polyethylene glycol mediated water stress. Plant Science. 168(1):223-231. https://doi.org/10.1016/j.plantsci.2004.07.032
  30. Umberto, Q. 2006. World dictionary of grasses, common names, scientific names, eponyms, and etymology. CRC Press. New York. USA. p. 429.
  31. Yamasaki, S. and Dillenburg, L.R. 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal. 11(2):69-75.
  32. Yun, I.S. 1968. Comparative experiment of feeding values of Arundinella hirta Tanaka hay cutting different growing stages. Journal of Animal Science and Technology. 10:66-68.
  33. Zhang, C., Shi, S., Wang, B. and Zhao, J. 2018. Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiologiae Plantarum. 40:25.
  34. Zhao, L., He, J., Wang, X. and Zhang, L. 2008. Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. Journal of Plant Physiology. 165(2):182-191. https://doi.org/10.1016/j.jplph.2007.03.002