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1. Introduction

Autism spectrum disorder (ASD) is diagnosed by deficits in 
social interaction as well as restricted and repetitive behaviors or 
interests, according to the Diagnostic and Statistical Manual of 
Mental Disorders, 5th edition (DSM-5) (American Psychiatric 

Association, 2013). Though diagnosis of ASD is mostly based on 
observing a child’s behavior during a clinical evaluation process, 
some standardized diagnostic tests such as Autism Diagnostic 
Observation Schedule, 2nd edition (ADOS-2) contain specific items 
to evaluate speech and language of a child, particularly, with respect 
to prosody (Lord et al., 2012).

* This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No.2022-0-00223, Development of digital therapeutics to improve communication ability of autism spectrum disorder patients).

** mchung@snu.ac.kr, Corresponding author
Received 23 May 2023; Revised 24 June 2023; Accepted 24 June 2023
ⓒ Copyright 2023 Korean Society of Speech Sciences. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non- 
Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any 
medium, provided the original work is properly cited.

pISSN 2005-8063
eISSN 2586-5854
2023. 6. 30.
Vol.15 No.2
pp. 53-59

말소리와 음성과학
https://doi.org/10.13064/KSSS.2023.15.2.053

Knowledge-driven speech features for detection of Korean-speaking 
children with autism spectrum disorder*

Seonwoo Lee1․Eun Jung Yeo1․Sunhee Kim2․Minhwa Chung1,**

1Department of Linguistics, Seoul National University, Seoul, Korea
2Department of French Language Education, Seoul National University, Seoul, Korea

Abstract 

Detection of children with autism spectrum disorder (ASD) based on speech has relied on predefined feature sets due to 
their ease of use and the capabilities of speech analysis. However, clinical impressions may not be adequately captured due 
to the broad range and the large number of features included. This paper demonstrates that the knowledge-driven speech 
features (KDSFs) specifically tailored to the speech traits of ASD are more effective and efficient for detecting speech of 
ASD children from that of children with typical development (TD) than a predefined feature set, extended Geneva 
Minimalistic Acoustic Standard Parameter Set (eGeMAPS). The KDSFs encompass various speech characteristics related to 
frequency, voice quality, speech rate, and spectral features, that have been identified as corresponding to certain of their 
distinctive attributes of them. The speech dataset used for the experiments consists of 63 ASD children and 9 TD children. 
To alleviate the imbalance in the number of training utterances, a data augmentation technique was applied to TD children’s 
utterances. The support vector machine (SVM) classifier trained with the KDSFs achieved an accuracy of 91.25%, 
surpassing the 88.08% obtained using the predefined set. This result underscores the importance of incorporating domain 
knowledge in the development of speech technologies for individuals with disorders.
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Speech of children with ASD is typically demonstrated as 
monotonous or exaggerated because of its atypical prosody. When it 
comes to pitch, the fundamental frequency (F0) of ASD children is 
higher than that of typicaly developing (TD) children (Diehl & Paul, 
2012; Fusaroli et al., 2017; Lyakso et al., 2017), though it is a 
controversial topic. The range of the F0 varies greatly, from very 
narrow to very wide (Bonneh et al., 2011; Fusaroli et al., 2017; 
McCann & Peppé, 2003). The speech rate of ASD children is slower 
than their TD peers (Bone et al., 2012). It could be due to longer 
utterances (Diehl & Paul, 2012; Fusaroli et al., 2017) and syllable 
duration (Fusaroli et al., 2017). Additionally, the pauses are longer 
and more frequent in the speech of ASD children (Fusaroli et al., 
2017). Voice quality is also a contributing factor to their abnormal 
speech. The degree of atypical speech in ASD children has a 
positive correlation with jitter and jitter variability and a negative 
correlation with harmonic-to-noise ratio (HNR) (Bone et al., 2012).

These abnormal speech patterns of ASD children have motivated 
researchers to focus on speech signals to detect ASD (Asgari et al., 
2021; Beccaria et al., 2022; Cho et al., 2019; Lee et al., 2023; 
MacFarlane et al., 2022; Mohanta et al., 2020). It would reduce the 
time and effort spent for diagnosis of ASD and could be easily 
utilized for screening of the disorder. Automated ASD detection 
models have been developed based on hand-crafted features (Asgari 
et al., 2021; Cho et al., 2019; MacFarlane et al., 2022; Mohanta et 
al., 2020), or, recently, deep learning (Lee et al., 2023). 
Hand-crafted features were to reflect the characteristics specific to 
the dataset used, which resulted in difficulty in generalizing to other 
datasets. On the other hand, deep learning approaches suffered from 
the black box issue, making it challenging to interpret the results.

Recently, in order to mitigate the limitations of conventional 
approaches, some studies have proposed the detection of ASD 
speech using predefined acoustic feature sets such as Geneva 
Minimalistic Acoustic Standard Parameter Set (GeMAPS), extended 
GeMAPS (eGeMAPS) (Eyben et al., 2016), and COMputationsl 
PARalinguistics ChallengE (ComParE) which are extracted by 
openSMILE toolkit (Eyben et al., 2010) in Python. They are 
proposed as a standard acoustic feature set for voice analysis to 
facilitate easy comparison and merger across studies on speech 
signals (Eyben et al., 2016). The GeMAPS set contains 18 low-level 
descriptors (LLD) and their functionals (arithmetic mean and 
coefficient of variation). The 18 LLDs are related to frequency, 
amplitude, spectrum, and time. The eGeMAPS set has additional 7 
LLDs in the cepstral and frequency domains, some of which are 
dynamic. The ComParE set includes 44 LLDs whose extra domain 
includes voicing probability and extra delta features are added. The 
total number of features in GeMAPS, eGeMAPS, and ComParE is 
62, 88, and 6,373, respectively. The easiness to extract features and 
the general coverage for acoustics have attracted researchers to 
utilize predefined feature sets to detect a disorder, including 
Alzheimer’s disease (Haider et al., 2020), voice disorders (Barche et 
al., 2020) as well as ASD (Beccaria et al., 2022; Cho et al., 2019). 

One of the limitations is that most features included in the 
predefined set do not hold significant clinical relevance, because 
they were proposed for general acoustic research purposes. For the 
detection of a disease, a subset of features was selected and even 
compressed to reduce the number of features. This process may not 
consider the actual speech characteristics of people with ASD, 
which does not ensure that the features irrelevant to the properties of 
ASD are excluded. An additional concern arises that the results are 

hard to be interpreted when the features are compressed by feature 
extraction techniques. It is not easy to accurately explain what each 
compressed feature denotes and how it contributes to the result. 
Therefore, the compressed features could lose their ability to 
provide evidence for diagnosis. Despite the dramatic development 
of technology, technologies for disorders should be utilized with 
considerable care.

This paper aims to investigate the efficacy of knowledge-driven 
speech features (KDSFs) representing characteristics of children 
with ASD for detecting children with ASD. Then it will be directly 
compared with a predefined set, eGeMAPS, for the first time. The 
higher performance of KDSFs would indicate the importance of 
injecting disorder-specific knowledge into the development of 
technologies for disordered speech. The rest of this paper is 
organized as follows. Section 2 introduces related works of 
detection of ASD with predefined feature sets. The next section 
describes methods, including a speech dataset and features used. 
Then experimental settings and results are followed in section 4. 
Section 5 discusses the experimental results, followed by a 
conclusion in section 6.

2. Related Work

Two studies made direct use of the predefined feature sets for the 
detection of autistic speech. Beccaria et al. (2022) utilized the 
eGeMAPS feature set to analyze Italian-speaking ASD children’s 
speech and classify children with ASD from their TD peers. They 
selected to use the set, considering the number of features and its 
dynamic features. The 16 features significantly different from age- 
and gender-matched TD children were selected to train various 
classifiers to avoid the situation where features unrelated to the 
symptoms lead to lower performance. Selected features included 
pitch falling slope, F2 frequency, F2 bandwidth, jitter, shimmer, 
HNR, loudness, loudness of rising slope, loudness of 20th 
percentile, spectral flux of voiced segments, slope between 0–500 
Hz of unvoiced segments, and slope of 500–1,500 Hz of unvoiced 
segments. Among various classifiers, support vector machine 
(SVM) showed stable performances across metrics, achieving 83% 
of accuracy and 80% of F1-score on the test set.

Cho et al. (2019) extracted speech features using the ComParE 
feature set. Extra text features were also utilized to reflect linguistic 
characteristics such as lexicons, turn-taking, and part-of-speech. All 
features were extracted from both children with ASD and TD. 
Among more than 6,000 ComParE features, 44 LLDs with 4 
functionals of mean, median, standard deviation (SD), and 
interquartile range (IQR), which is calculated by subtracting 25th 
percentile value from 75th percentile value, were used. By feature 
selection, more than 17 acoustic features of AD children were 
selected, including voicing probability, median of HNR-delta, IQR 
of root mean square-delta, median of 6th and 7th Mel-frequency 
cepstral coefficient (MFCC)-delta, IQR of HNR median or 3rd 
MFCC-delta, mean and median of 6th MFCC, median zero crossing 
rate, and median and IQR of F0-delta. Due to the large number of 
features from speech and text, principal component analysis was 
implemented to reduce the feature dimension into 10. The gradient 
boosting classifier achieved an accuracy of 75.71% (65.71% for 
ASD and 85.71% for TD children).

While these studies demonstrate the effectiveness of predefined 
feature sets in detecting the speech of ASD children, the importance 
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of proper feature selection is also clearly revealed. A large number 
of features were extracted initially, but only a subset of the features 
was actually used. This could be explained by the fact that the 
feature sets may not always reflect clinical intuition and significance 
due to their large number. As a result, researchers are prompted to 
select or even compress features for the purpose of improving 
performance as well as avoiding overfitting. However, as mentioned 
earlier, the reduced features are difficult to interpret, thereby 
diminishing the practicality of using a classification model in 
clinical settings.

3. Method

3.1. Speech Database
The speech database used for the experiment is an initial version 

of a speech database of Korean-speaking children with ASD, which 
is under construction for developing a digital therapeutic program. 
In this version of the database, there are 64 ASD children and 9 TD 
children as controls. Every child with ASD is diagnosed by either 
DSM-4 or DSM-5 criteria. Speech from a child with ASD is 
excluded for the experiment because of the small number of 
utterances. All the utterances in the database are in Korean. 
Unfortunately, the database would not be publicly open because of 
its privacy issue.

The speech is recorded during speech and language evaluation 
sessions at various speech and language centers in Korea. The 
utterances are recorded through a microphone (Logitech Blue Yeti) 
which is attached to the center of the ceiling. Initially, the 
microphone was placed on a desk between a child and a speech and 
language pathologist (SLP). However, it was later moved to the 
current location because the presence of the microphone and its 
twinkling light distracted some children.

Each session consists of a standardized Korean articulation 
assessment using the Assessment of Phonology and Articulation for 
Children (APAC) (Kim et al., 2007), and a conversation with an 
SLP. Articulation assessment is conducted to capture the 
articulatory characteristics of ASD children, which can be utilized to 
develop an automatic speech recognition model and pronunciation 
evaluation model for the digital therapeutic program. APAC is 
selected because every phoneme in the Korean language is included 
within the target words. During each session of the assessment, a 
child is asked to name objects or actions described on colored 
pictures. If the child makes any mispronunciations, the SLP asks the 
child to name it again. When a child does not respond 
spontaneously, the SLP would name it and request the child to 
repeat it. Conversations are designed to elicit words that would be 
used for the digital therapeutic program. The topics of the 
conversations are related to children’s everyday routines and play. 
The audio recording of each session is manually segmented into 
utterances and then transcribed and annotated for overlap, noise, 
immediate echolalia, off-topic utterances, exclamation, 
non-linguistic sounds (such as laugh or cough), long pauses, and 
low-volume sounds. In addition, utterances spoken during the 
articulation assessment are phonemically transcribed with a special 
symbol when there are any mispronunciations. Any audio segments 
associated with the child’s identification are masked. The current 
version of the database does not include metadata about the 
children’s chronological age, gender, diagnosis-related scores, and 

language and speech performance. This information will be added to 
the final version.

The process of collecting and pre-processing the database is 
approved by the Institutional Review Board (IRB) of Gacheon 
University (IRB No: 1044396-202207-HR-136-01) and written 
informed consent is obtained from each speaker or their parents or 
caregivers.

3.2. Knowledge-Driven Speech Features (KDSFs)
In order to reflect the speech characteristics of ASD children, 

prosodic features that are identified in previous studies as different 
from their TD peers are extracted as KDSFs, including pitch, voice 
quality, and speech rate. Pitch-related features are to capture the 
higher F0 and variations in the range of F0 of children with ASD 
(Bonneh et al., 2011; Diehl & Paul, 2012; Fusaroli et al., 2017; 
Lyakso et al., 2017; McCann & Peppe´, 2003). Voice quality-related 
features are extracted to reflect the fact that voice quality is 
correlated with the abnormality of speech in children with ASD 
(Bone et al., 2012). Features associated with speech rate are selected 
to take into account slower speech rate, which could be influenced 
by longer utterances, syllable duration, pause duration, and frequent 
pauses (Bone et al., 2012; Diehl & Paul, 2012; Fusaroli et al., 2017). 

MFCCs as cepstral features are additionally extracted given that 
they encode general acoustic characteristics associated with spectral 
shape, timbre, and linguistic content of the audio signal. They are 
widely utilized for the detection of autistic speech (Beccaria et al., 
2022; Mohanta & Mittal, 2022) as well as other disorders such as 
dysarthria (Yeo et al., 2021), Parkinson’s disease (Benba et al., 
2015), and voice disorders (Barche et al., 2020). Specific features 
are described as follows. The number in parentheses denotes the 
total number of features in the category:

1) Pitch (7): A voice report is first generated, and F0-related 
values are extracted from it. Pitch features include mean, SD, 
maximum, minimum, median, 25th percentile, and 75th 
percentile values of F0s.

2) Voice quality (5): Voice quality-related features include jitter, 
shimmer, HNR, the number of voice breaks, and the 
percentage of voice breaks. Jitter refers to the cycle-to-cycle 
frequency variation, while shimmer refers to the cycle-to-cycle 
amplitude variation. HNR measures the ratio between the 
harmonic components and the non-harmonic components 
(noise) in the voice signal. The number of voice breaks is the 
count of abrupt interruptions in the voice signal, and the 
percentage of voice breaks denotes the proportion of time in 
the voice signal containing abrupt interruptions. 

3) Speech rate (8): Speech rate-related features include total 
duration, pause duration, speaking duration, speaking rate, 
articulation rate, average syllable duration, the number of 
pauses, and the ratio of speech duration and total duration. 
Speaking duration is calculated by subtracting the pause 
duration from the total duration. Speaking rate is calculated as 
the total duration divided by the number of syllables, and 
articulation rate is calculated as the speaking duration divided 
by the number of syllables. Average syllable duration is a 
reciprocal of articulation rate, calculated as the number of 
syllables divided by the speaking duration. 

4) MFCCs (13): Cepstral features include the first 13 MFCCs. 
From a speech signal, 12-dimensional MFCCs and a log 
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energy set are extracted. Then each of the 13-dimensional 
MFCCs are time-averaged. 

Pitch, voice quality, and speech rate-related features are extracted 
with Parselmouth (Jadoul et al., 2018) in Python and cepstral 
features using the Librosa library (McFee et al., 2022) in Python.

4. Experiments

4.1. Experimental Settings
The dataset contains 14,967 utterances (10 hours and 21 minutes) 

of ASD children and 2,086 (1 hour and 18 minutes) of TD children. 
The dataset is first divided into a training set and a test set in a ratio 
of 8:2 based on the speakers. During training, the small number of 
utterances from TD children would cause an issue related to a data 
imbalance. To handle the issue, three augmentation techniques of 
SpecAugment (Park et al., 2019) of time warp, frequency masking, 
and time masking are applied to only TD children’s utterances in the 
training set, resulting in 1,588, 1,588, and 1,643 extra utterances, 
respectively. Consequently, the total number of training utterances 
of ASD and TD children is 11,974 and 6,473, respectively. The total 
number of test utterances of ASD and TD children is 2,993 and 414, 
respectively, without any augmented utterances to avoid any 
potential biases that may arise from learning characteristics specific 
to the augmentation. There are no overlapping speakers in the 
training and test datasets.

The KDSFs features are extracted from each utterance. In order to 
be compared with the effectiveness of the KDSFs, the eGeMAPS 
features (version 2.1) (Eyben et al., 2016) are extracted as the 
baseline feature set. SVMs with the radial basis function (RBF) 
kernel are trained for classification of children with ASD and TD 
children, using the Scikit-learn toolkit (Pedregosa et al., 2011) in 
Python. The optimal parameters are obtained by implementing grid 
search with stratified 5-fold cross-validation. For both C and γ, the 
search space is [0.001, 0.01, 0.1, 1, 10, 25, 50, 100]. An SVM 
classifier is trained with the KDSF set and its subsets with spectral 
features to compare the effectiveness of each prosodic feature. A 
baseline classifier is trained with the entire eGeMAPS features. To 
identify useful features as well as reduce the number of features, a 
feature selection algorithm, recursive feature elimination (RFE) is 
additionally implemented to train both feature sets. An SVM with 

the linear kernel is used as an estimator during the feature selection 
process. Ten CPUs (Intel(R) Xeon(R) Gold 5220R CPU @ 2.20 
GHz) are utilized for training each classifier.

4.2. Metrics
The metric for the performance is accuracy which considers both 

results for ASD and TD. True positive (TP) is the case a true ASD 
utterance is classified as ASD, and true negative (TN) is when a true 
TD utterance is classified as TD. In contrast, a false positive (FP) is 
a true TD utterance that is classified as ASD, and a false negative 
(FN) is a true ASD utterance that is classified as TD. Precision, 
recall, and F1-score from both groups of children are also calculated 
in addition to accuracy. 

Accuracy, precision, and recall are calculated as in equations (1), 
(2), (3), respectively. F1-score is calculated as the harmonic mean of 
precision and recall. The precision, recall, and F1-score from the 
perspective of TD children can be calculated by switching P and N 
in the equations.

 


          (1)

Pr 


          (2)

 


          (3)

4.3. Results
The classifier trained with all the KDSFs (C=10, γ=0.001) 

outperformed the baseline classifier trained with the entire 
eGeMAPS feature set (C=10, γ=0.001) in accuracy on the test set. 
KDSFs achieve 91.25% of accuracy, while the entire eGeMAPS 
feature set achieves 88.08% of accuracy. The proposed feature set 
also achieves better F1-score (95.18%) and precision (92.23%) for 
ASD, and better F1-score (52.70%) and recall (40.10%) for TD than 
the eGeMAPS set. The results are described in Table 1. It takes 1 
hour and 17 minutes and 3 hours and 36 minutes to train each 
classifier.

When RFE is implemented for feature selection, KDSFs also 
shows better performance than eGeMAPS on the test set in 

Feature set Accuracy
ASD TD

Precision Recall F1-score Precision Recall F1-score

eGeMAPS
All (88) 88.08 88.12 99.90 93.64 78.57 2.66 5.14

RFE (70) 88.29 88.62 99.43 93.72 65.31 7.73 13.82

KDSFs
All (29) 91.25 92.23 98.33 95.18 76.85 40.10 52.70

RFE (19) 90.78 94.55 94.99 94.77 62.50 60.39 61.43

Subset 
of KDSFs

Pitch+MFCC (18) 91.08 93.05 97.09 95.03 69.37 47.58 56.45

VQ+MFCC (18) 91.90 95.45 95.32 95.39 66.51 67.15 66.83

 SR+MFCC (21) 92.13 95.40 95.66 95.53 67.98 66.67 67.32

The best performances are in bold. The number in parenthesis denotes the number of features used for training the classifiers.
ASD, autism spectrum disorder; TD, typical development; eGeMAPS, extended Geneva Minimalistic Acoustic Standard Parameter Set; RFE, 
recursive feature elimination; KDSFs, knowledge-driven speech features; VQ, voice quality; MFCC, Mel-frequency cepstral coefficient; SR, speech 
rate.

Table 1. Classification results (%)
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accuracy, precision and F1-score for ASD, and recall and F1-score 
for TD, which is the same pattern as the full feature set. For KDSFs, 
19 out of 29 features are selected after RFE, and the accuracy 
reaches 90.78% on the test set (C=10, γ=0.001). The F1-score 
slightly declines for children with ASD (94.77%), but improves for 
TD children (61.43%), compared to the full KDSF set. The 19 
selected features are related to voice quality, speech rate, and 
cepstral values. Specific features are listed below:

1) Voice quality (3): jitter, shimmer, HNR 
2) Speech rate (8): total duration, pause duration, speaking 

duration, speaking rate, articulation rate, average syllable 
duration, the number of pauses, and ratio of speech duration 
and total duration

3) MFCCs (7): the 1st to 11th MFCCs except for 5th, 7th, and 8th 

Out of 88 eGeMAPS features, 70 are selected for training the 
classifier, which shows 88.29% of accuracy on the test set (C=25, γ
=0.001). F1-score for ASD children is similar to the entire feature 
set (93.72%), while F1-score for TD children improves to 13.82%. 
Specific features are as below: (µ for mean; SDN for normalized 
SD; V for voiced segments; UV for unvoiced segments):

1) Frequency (17): F0 (µ, SDN), percentile range of 0–2, values 
of 20th/50th/80th percentiles, frequency of the first formant 
(F1), the second formant (F2), and the third formant (F3) (µ, 
SDN), bandwidth of F1/F3 (µ, SDN), bandwidth of F2 (µ)

2) Amplitude (10): loudness (µ, SDN), percentile range 0–2, 
values of 20th/50th/80th percentiles, falling and rising slope 
(µ, SD)

3) Voice quality (6): jitter (µ, SDN), shimmer (µ, SDN), HNR (µ, 
SDN)

4) Speech rate (6): length of UV (µ, SD), length of V (µ, SD), V 
per second (i.e. pseudo syllable rate), the number of loudness 
peaks per second

5) Spectrum (30): the ratio of energy of the spectral harmonic 
peak at F1/F2/F3 center frequency to the energy of the spectral 
peak at F0 (µ, SDN), alpha ratio of UV (µ), alpha ratio of V 
(µ, SDN), Hammarberg Index of UV (µ), Hammarberg Index 
of V (SDN), harmonic difference between H1 and H2/H1 and 
H3 (µ), 1st/2nd/3rd/4th MFCC (µ), 1st/2nd/3rd/4th MFCC of 
V (µ), spectral slope of 0–500 Hz/500–1,500 Hz of V/UV (µ), 
spectral flux of UV (µ), spectral flux of V/all segments (µ, 
SDN)

6) Equivalent sound level 

The training time spent for KDSFs and eGeMAPS features 
including feature selection procedure is 16 hours and 54 minutes, 
and 27 hours and 41 minutes, respectively.

In the comparison of four sets of features, namely KDSFs with or 
without feature selection, and eGeMAPS with or without feature, 
the model trained with all KDSFs demonstrates the highest 
accuracy. Furthermore, this model exhibits the highest F1-score for 
children with ASD. The classifier trained with selected KDSFs by 
RFE achieves the best F1-score regarding TD children. In terms of 
ASD detection, the highest precision is obtained with the selected 
KDSFs by RFE, while the highest recall is from all the eGeMAPS 
features. In contrast, for TD children, the highest precision is 
attained with the entire eGeMAPS features, while the best recall is 

obtained with the selected KDSFs by RFE.
Performances of classifiers trained with subsets of KDSFs are 

also depicted in Table 1, showing the classifier with speech rate 
features with MFCCs achieves the best in accuracy. Regarding 
recall, pitch features with MFCCs are better than others for 
detecting ASD children, while voice quality features with MFCCs 
are best for detection of TD children. The time for training the 
classifiers with each subset is between 1.5 and 2 hours.

5. Discussion

The classifiers trained with KDSFs outperform those trained with 
the predefined feature set in accuracy and F1-score for both ASD 
and TD, regardless of applying feature selection. Furthermore, 
KDSFs exhibit higher efficiency as training time for KDSFs is 
halved compared to that of eGeMAPS features. When using all 
features as input, the classifier with all KDSFs shows the highest 
accuracy, while a classifier with eGeMAPS features exhibits the 
lowest. Moreover, the best F1-score from the perspective of ASD 
and TD is observed from all KDSFs and selected KDSFs, 
respectively. Better performance of KDSFs is not surprising as they 
are designed to represent speech characteristics of ASD children’s 
speech. The lowest performance of the entire eGeMAPS feature set 
could be explained by the large number of features. Too many 
features could deteriorate the performance by making the model 
overfit given data. The issue would become more challenging with a 
small and imbalanced dataset, which is often the case for disordered 
speech. Furthermore, some features would be unrelated to the traits 
of ASD children’s speech. Therefore, the results imply the 
importance of reflecting domain knowledge into feature engineering.

Recall is one of the important metrics for the detection task. FNs 
should be minimized as missing FNs could lead to wrong diagnoses, 
which potentially impacts the outcomes of children with ASD. 
Regarding the significance of recall, the results would mislead that 
eGeMAPS is more effective than the proposed KDSFs as classifiers 
trained with eGeMAPS features exhibit higher recall for detecting 
children with ASD. However, in contrast to the high recall for ASD, 
recall for TD is observed extremely low. It is suspected that the 
classifiers with eGeMAPS features are overfitted for ASD utterances. 
It is also supported by the feature selection analysis. After reducing 
the number of features, the recall for TD utterances is improved.

The aforementioned analysis of recall underscores the importance 
of addressing the gap of performances in recall as well as F1-score 
between ASD and TD children. A great discrepancy denotes a 
biased classification result. When a dataset is limited in size and 
imbalanced, the classification result is likely to lean towards a class 
with more data points. Even though data augmentation of TD 
utterances is implemented to mitigate the problem, there remains 
still a tendency for bias. The results of KDSFs exhibit some 
differences between ASD and TD in recall and F1-score. However, 
when using the eGeMAPS features, a substantial number of TD 
utterances are incorrectly classified as ASD, resulting in much larger 
disparity in recall and F1-score between ASD and TD. It would lead 
to misguided conclusions without careful analysis. It is speculated 
that the classifier could have been negatively influenced during the 
training process by the relatively larger feature set compared to the 
dataset size. 

In general, feature selection or feature extraction is conducted to 
reduce the feature dimension to address the problem caused by a 
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number of features. The experimental results indicate that the 
eGeMAPS feature set slightly benefits from feature selection in 
accuracy and all F1-scores, while KDSFs benefit in TD children’s 
recall and F1-score. The reduced eGeMAPS set includes features 
from every domain (i.e. frequency, amplitude, voice quality, time, 
spectrum, and equivalent sound level). However, the reduced set 
from KDSFs includes voice quality, speech rate, and spectral 
features, excluding pitch-related features. Both reduced sets share 
jitter, shimmer, HNR, speech rate-related features, and MFCC 1st to 
4th in common.

The shared features also correspond to speech characteristics of 
children with ASD in the dataset. For ASD children, significant 
higher values than TD children are observed in jitter (t=8.32, 
p<0.001), shimmer (t=5.21, p<0.001), total duration of utterance 
(t=2.23, p=0.03), the ratio of speech duration to total duration 
(t=2.57, p=0.01), speaking rate (t=5.54, p<0.001), and articulation 
rate (t=5.38, p<0.001), while lower values in HNR (t=–12.10, 
p<0.001) and average syllable duration (t=–4.12, p<0.001). Speech 
duration (t=1.87, p=0.06) and pause duration (t=1.95, p=0.05) 
exhibit no significant difference, but tend to be higher in ASD 
utterances. As in studies on speech characteristics of ASD children, 
the speech utterances in the dataset are also distinct from TD 
children in jitter and HNR (Bone et al., 2012), speech rate (Bone et 
al., 2012), and duration of syllable and utterance (Fusaroli et al., 
2017).

There are commonly selected eGeMAPS features between this 
work and Beccaria et al. (2022). Features related to voice quality, 
such as jitter, shimmer, and HNR are common not only in the 
eGeMAPS feature set but also in the KDSF set. In the frequency 
domain, F2 frequency and bandwidth are common. Loudness 
features include mean loudness, the value of the 20th percentile, and 
the SD of the rising slope. Among spectral features, the mean 
spectral flux of entire segments and voiced segments, and the mean 
slope of unvoiced segments of 0–500 Hz and 500–1,500 Hz are 
selected to train a classifier. There is nothing in common with Cho 
et al. (2019) because selected features in Cho et al. (2019) are 
mostly delta values and functionals that are not calculated in the 
eGeMAPS set.

Among the classifiers trained with each prosodic feature domain 
in conjunction with cepstral features, speech rate-related feature set 
performs best in terms of accuracy and F1-score of ASD and TD 
children. Meanwhile, the best precision and recall are from the pitch 
or voice quality domain for both ASD and TD. This indicates that 
all of the feature domain attribute to the improvement of KDSFs.

6. Conclusion

For the detection of ASD speech, KDSFs are utilized to reflect 
the prosodic characteristics of ASD. SVM classifiers are trained 
with KDSFs and eGeMAPS features from a speech database of 
Korean-speaking ASD and TD children. The highest performance is 
achieved by the KDSFs. This result indicates the importance of 
domain-specific knowledge to develop a model for disorder 
detection.

One of the limitations is the impossibility of controlling the age 
of speakers due to the absence of metadata in the speech database. It 
is planned to be appended, so we would conduct the experiments 
considering children’s chronological age in the short future. Future 
works should consider more features as well. For example, features 

related to long pauses and loudness variability during a session 
could be included for the pragmatic aspects. Text features extracted 
from the transcript and annotations would also be useful. With the 
success of the KDSFs, the experiment would be expanded to 
classification of severity of ASD. 
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