DOI QR코드

DOI QR Code

Strategy of Patient-Specific Therapeutics in Cardiovascular Disease Through Single-Cell RNA Sequencing

  • Yunseo Jung (Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital) ;
  • Juyeong Kim (Department of Medicine, Seoul National University College of Medicine, Seoul National University) ;
  • Howon Jang (Department of Medicine, Seoul National University College of Medicine, Seoul National University) ;
  • Gwanhyeon Kim (Department of Medicine, Seoul National University College of Medicine, Seoul National University) ;
  • Yoo-Wook Kwon (Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital)
  • Received : 2022.11.01
  • Accepted : 2022.11.15
  • Published : 2023.01.01

Abstract

Recently, single cell RNA sequencing (scRNA-seq) technology has enabled the discovery of novel or rare subtypes of cells and their characteristics. This technique has advanced unprecedented biomedical research by enabling the profiling and analysis of the transcriptomes of single cells at high resolution and throughput. Thus, scRNA-seq has contributed to recent advances in cardiovascular research by the generation of cell atlases of heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and diseases. This review summarizes the overall workflow of the scRNA-seq technique itself and key findings in the cardiovascular development and diseases based on the previous studies. In particular, we focused on how the single-cell sequencing technology can be utilized in clinical field and precision medicine to treat specific diseases.

Keywords

References

  1. Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol 2018;14:479-92.
  2. Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 2020;17:457-73.
  3. Pimpalwar N, Czuba T, Smith ML, Nilsson J, Gidlof O, Smith JG. Methods for isolation and transcriptional profiling of individual cells from the human heart. Heliyon (Lond) 2020;6:e05810.
  4. Yamada S, Nomura S. Review of single-cell RNA sequencing in the heart. Int J Mol Sci 2020;21:8345.
  5. Choi YH, Kim JK. Dissecting cellular heterogeneity using single-cell RNA sequencing. Mol Cells 2019;42:189-99.
  6. Hulin A, Hortells L, Gomez-Stallons MV, et al. Maturation of heart valve cell populations during postnatal remodeling. Development 2019;146:dev173047.
  7. Gladka MM, Molenaar B, de Ruiter H, et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 2018;138:166-80.
  8. Panther F, Williams T, Ritter O. Inhibition of the calcineurin-NFAT signalling cascade in the treatment of heart failure. Recent Patents Cardiovasc Drug Discov 2009;4:180-6.
  9. Vidal R, Wagner JUG, Braeuning C, et al. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight 2019;4:e131092.
  10. Gladka MM. Single-cell RNA sequencing of the adult mammalian heart-state-of-the-art and future perspectives. Curr Heart Fail Rep 2021;18:64-70.
  11. Ramilowski JA, Goldberg T, Harshbarger J, et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun 2015;6:7866.
  12. Skelly DA, Squiers GT, McLellan MA, et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Reports 2018;22:600-10.
  13. Farbehi N, Patrick R, Dorison A, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 2019;8:e43882.
  14. Ren Z, Yu P, Li D, et al. Single-cell reconstruction of progression trajectory reveals intervention principles in pathological cardiac hypertrophy. Circulation 2020;141:1704-19.
  15. Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 2014;11:163-6.
  16. Deng Q, Ramskold D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014;343:193-6.
  17. Wang M, Gu M, Liu L, Liu Y, Tian L. Single-cell RNA sequencing (scRNA-seq) in cardiac tissue: applications and limitations. Vasc Health Risk Manag 2021;17:641-57.
  18. Betts JG, Young KA, Wise JA, et al. Anatomy and Physiology 2e. Houston (TX): OpenStax; 2013.
  19. Samad T, Wu SM. Single cell RNA sequencing approaches to cardiac development and congenital heart disease. Semin Cell Dev Biol 2021;118:129-35.
  20. Chen Z, Wei L, Duru F, Chen L. Single-cell RNA sequencing: in-depth decoding of heart biology and cardiovascular diseases. Curr Genomics 2020;21:585-601.
  21. Litvinukova M, Talavera-Lopez C, Maatz H, et al. Cells of the adult human heart. Nature 2020;588:466-72.
  22. Cui Y, Zheng Y, Liu X, et al. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep 2019;26:1934-1950.e5.
  23. Liu X, Chen W, Li W, et al. Single-cell RNA-seq of the developing cardiac outflow tract reveals convergent development of the vascular smooth muscle cells. Cell Rep 2019;28:1346-1361.e4.
  24. Xiong H, Luo Y, Yue Y, et al. Single-cell transcriptomics reveals chemotaxis-mediated intraorgan crosstalk during cardiogenesis. Circ Res 2019;125:398-410.
  25. DeLaughter DM, Bick AG, Wakimoto H, et al. Single-cell resolution of temporal gene expression during heart development. Dev Cell 2016;39:480-90.
  26. Li G, Xu A, Sim S, et al. Transcriptomic profiling maps anatomically patterned subpopulations among single embryonic cardiac cells. Dev Cell 2016;39:491-507.
  27. Lescroart F, Wang X, Lin X, et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 2018;359:1177-81.
  28. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 2014;9:171-81.
  29. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76.
  30. Friedman CE, Nguyen Q, Lukowski SW, et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell 2018;23:586-598.e8.
  31. Churko JM, Garg P, Treutlein B, et al. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 2018;9:4906.
  32. Yap L, Wang JW, Moreno-Moral A, et al. In vivo generation of post-infarct human cardiac muscle by laminin-promoted cardiovascular progenitors. Cell Rep 2019;26:3231-3245.e9.
  33. Wehrens M, de Leeuw AE, Wright-Clark M, et al. Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Rep 2022;39:110809.
  34. Kopecky BJ, Dun H, Amrute JM, et al. Donor macrophages modulate rejection after heart transplantation. Circulation 2022;146:623-38.
  35. Chang Y, Li X, Cheng Q, et al. Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation. Basic Res Cardiol 2021;116:64.
  36. Tambi R, Abdel Hameid R, Bankapur A, et al. Single-cell transcriptomics trajectory and molecular convergence of clinically relevant mutations in Brugada syndrome. Am J Physiol Heart Circ Physiol 2021;320:H1935-48.
  37. Bui TV, Hwang JW, Lee JH, Park HJ, Ban K. Challenges and limitations of strategies to promote therapeutic potential of human mesenchymal stem cells for cell-based cardiac repair. Korean Circ J 2021;51:97-113.
  38. Almeida SO, Skelton RJ, Adigopula S, Ardehali R. Arrhythmia in stem cell transplantation. Card Electrophysiol Clin 2015;7:357-70.
  39. Kim KH, Pereira NL. Genetics of cardiomyopathy: clinical and mechanistic implications for heart failure. Korean Circ J 2021;51:797-836.
  40. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002;287:1308-20.
  41. Bajpai G, Schneider C, Wong N, et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med 2018;24:1234-45.
  42. Ortega A, Rosello-Lleti E, Tarazon E, et al. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS One 2014;9:e107635.
  43. Fan P, Zhang L, Cheng T, et al. MiR-590-5p inhibits pathological hypertrophy mediated heart failure by targeting RTN4. J Mol Histol 2021;52:955-64.
  44. Wu H, Malone AF, Donnelly EL, et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J Am Soc Nephrol 2018;29:2069-80.
  45. Ferguson A, Iasella C, Chen W, et al. Gene expression profiling of lung transplant patients using next-generation sequencing to identify biomarkers for chronic lung allograft dysfunction. Am J Respir Crit Care Med 2018;197:A4732.
  46. Lavine KJ, Epelman S, Uchida K, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A 2014;111:16029-34.
  47. Talib AK, Nogami A. Catheter ablation for Brugada syndrome. Korean Circ J 2020;50:289-301.
  48. Cao J, O'Day DR, Pliner HA, et al. A human cell atlas of fetal gene expression. Science 2020;370:eaba7721.
  49. Tucker NR, Chaffin M, Fleming SJ, et al. Transcriptional and cellular diversity of the human heart. Circulation 2020;142:466-82.
  50. Ashley EA. Towards precision medicine. Nat Rev Genet 2016;17:507-22.
  51. Aspinall MG, Hamermesh RG. Realizing the promise of personalized medicine. Harv Bus Rev 2007;85:108-17, 165.
  52. Vicente AM, Ballensiefen W, Jonsson JI. How personalised medicine will transform healthcare by 2030: the ICPerMed vision. J Transl Med 2020;18:180.
  53. Atkinson M. Mapping the 100 trillion cells that make up your body. News-University of Florida [Internet]. Gainesville (FL): University of Florida; 2018 [cited 2022 October 24]. Available from: https://news.ufl.edu/articles/2018/10/mapping-the-100-trillion-cells-that-make-up-your-body.html.
  54. Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 2020;37:471-84.
  55. Lee MC, Lopez-Diaz FJ, Khan SY, et al. Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci U S A 2014;111:E4726-35.
  56. Spiller W, Jung KJ, Lee JY, Jee SH. Precision medicine and cardiovascular health: insights from mendelian randomization analyses. Korean Circ J 2020;50:91-111.
  57. Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res 2018;122:1302-15.
  58. HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 2019;574:187-92.
  59. Brandenburg RO. Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J 1980;44:672-3.
  60. Elliott PM. Personalized medicine for dilated cardiomyopathy. Eur Heart J 2021;42:175-7.
  61. Reichart D, Lindberg EL, Maatz H, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 2022;377:eabo1984.
  62. Fujita T, Fujino N, Anan R, et al. Sarcomere gene mutations are associated with increased cardiovascular events in left ventricular hypertrophy: results from multicenter registration in Japan. JACC Heart Fail 2013;1:459-66.