DOI QR코드

DOI QR Code

Defning the reactivity of nanoparticles to peptides through direct peptide reactivity assay (DPRA) using a high pressure liquid chromatography system with a diode array detector

  • 투고 : 2022.08.29
  • 심사 : 2022.12.23
  • 발행 : 2023.07.15

초록

The possibility of inducing skin sensitization reactions following exposure to various chemicals can lead to skin diseases, and the evaluation of skin sensitivity to such substances is very important. However, as animal tests for skin sensitization are prohibited, the OECD Test Guideline 442 C was designated as part of an alternative testing method. Therefore, in this study, the reactivity of cysteine and lysine peptides to nanoparticle substrates was identified through HPLC-DAD analysis according to the skin sensitization animal replacement test method specified in the OECD Test Guideline 442 C. In this study, all criteria for skin sensitization experiments specified in OECD Test Guideline 442 C were satisfied. As a result of analyzing the disappearance rates of cysteine and lysine peptides for the five types of nanoparticle substrates (TiO2, CeO2, Co3O4, NiO, and Fe2O3) using the established analytical method, all were identified as positive. Therefore, our findings suggest that basic data from this technique can contribute to skin sensitization studies by providing the depletion percentage of cysteine and lysine peptides for nanoparticle materials that have not yet been tested for skin sensitization.

키워드

참고문헌

  1. De Groot AC (2008) Test concentrations and vehicles for 4350 chemicals, 3rd edn. Acdegroot Publishing, p 455
  2. Kimner I, Mitchell J, Griffin AC (1986) Development of a murine local lymph node assay for the determination of sensitizing potential. Food Chem Toxicol 24:585-586. https://doi.org/10.1016/0278-6915(86)90124-9
  3. Peiser M, Tralau T, Heidler J, Api M, Arts JHE, Basketter DA, Lepoittevin JP (2012) Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Cell Mol Life Sci 18:763-781. https://doi.org/10.1007/s00018-011-0846-8
  4. Thyssen JP, Linneberg A, Menne T, Johansen JD (2007) The epidemiology of contact allergy in the general population-prevalence and main findings. Contact Derm 57:287-299. https://doi.org/10.1111/j.1600-0536.2007.01220.x
  5. Kaplan DH, Igyarto BZ, Gaspari AA (2012) Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 12:114-124. https://doi.org/10.1038/nri3150
  6. Karlberg AT, Bergstrom MA, Borje A, Luthman K, Nilsson JL (2008) Allergic contact dermatitis-formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol 21:53-69. https://doi.org/10.1021/tx7002239
  7. Cahill J, Williams JD, Matheson MC, Palmer MC, Burgress JA, Dharmage SC (2012) Occupational contact dermatitis: a review of 18 years of data from an Occupational Dermatology Clinic in Australia. Safe Work Australia
  8. Kimber I, Hilton J, Dearman RJ, Gerberick GF, Ryan CA, Basketter DA, Scholes EW, Ladics GS, Loveless SE, House RV (1995) An international evaluation of the murine local lymph node assay and comparison of modified procedures. Toxicology 103:63-73. https://doi.org/10.1016/0300-483x(95)03114-u
  9. Magnusson B, Kligman AM (1969) The identification of contact allergens by animal assay. The guinea pig maximization test. J Invest Dermatol 52:268-276. https://doi.org/10.1038/jid.1969.42
  10. EU (2003) Directive 2003/15/EC of the European Parliament and of the Council. OJEU 66:26-35
  11. Gerberick GF, Natsch A, Emter R, Ashikaga T, Miyazawa M, Sakaguchi H (2015) Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol 71:337-351. https://doi.org/10.1016/j.yrtph.2014.12.008
  12. Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP (2004) Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 81:332-343. https://doi.org/10.1093/toxsci/kfh213
  13. Gerberick GF, Vassallo JD, Foertsch LM, Price BB, Chaney JG, Lepoittevin JP (2007) Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol Sci 97:417-427. https://doi.org/10.1093/toxsci/kfm064
  14. Lalko JF, Kimber I, Dearman RJ, Gerberick GF, Sarlo K, Api AM (2011) Chemical reactivity measurements: potential for characterization of respiratory chemical allergens. Toxicol Vitro 25:433-445. https://doi.org/10.1016/j.tiv.2010.11.007
  15. Natsch A, Gfeller H (2008) LC-MS-based characterization of the peptide reactivity of chemicals to improve the in vitro prediction of the skin sensitization potential. Toxicol Sci 106:464-478. https://doi.org/10.1093/toxsci/kfn194
  16. Assadian E, Hadi Zarei M, Gilani AG, Farshin M, Degampanah H, Pourahmad J (2018) Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biol Trace Elem Res 184:350-357. https://doi.org/10.1007/s12011-017-1170-4
  17. Girolomoni G, Gisondi P, Ottaviani C, Cavani A (2004) Immuno-regulation of allergic contact dermatitis. J Dermatol 31:264-270. https://doi.org/10.1111/j.1346-8138.2004.tb00671.x
  18. Buehler EV (1965) Delayed contact hypersensitivity in the guinea pig. Arch Dermatol 91:171-177. https://doi.org/10.1001/archderm.1965.01600080079017
  19. Kimber I (2020) The activity of methacrylate esters in skin sensitisation test methods II. A review of complementary and additional analyses. Regul Toxicol Pharmacol 119:104821. https://doi.org/10.1016/j.yrtph.2020.104821
  20. Zhang F, Erskine T, Klapacz J, Raja S, Sue M (2018) A highly sensitive and selective high pressure liquid chromatography with tandem mass spectrometry (HPLC/MS-MS) method for the direct peptide reactivity assay (DPRA). J Pharmacol Toxicol Methods 94:1-15. https://doi.org/10.1016/j.vascn.2018.07.004
  21. Miyazaki H, Samejima Y, Iwata K, Minamino Y, Hikida S, Ariumi H, Ikeda H, Hamada Y, Yamashita K, Usui K (2020) Mass Spectrometry-Based solid phase peptide reaction assay for detecting allergenicity using an immobilized peptide-conjugating photocleavable linker. Int J Mol Sci 21:8332. https://doi.org/10.3390/ijms21218332
  22. Hashempour S, Ghanbarzadeh S, Maibach HI, Ghorbani M, Hamishehkar H (2019) Skin toxicity of topically applied nanoparticles. Ther Deliv 6:383-396. https://doi.org/10.4155/tde-2018-0060
  23. Park KH, Song GC, Choo HY, Heo Y, Kim BH (2017) Condition establishment study of the direct peptide reactivity assay in Korea. Prev Vet Med 41:174-179. https://doi.org/10.13041/jpvm.2017.41.4.174
  24. Imamura M, Wanibuchi S, Yamamoto Y, Kojima H, Ono A, Kasahara T, Fujita M (2021) Improving predictive capacity of the amino acid derivative reactivity assay test method for skin sensitization potential with an optimal molar concentration of test chemical solution. J Appl Toxicol 41:303-329. https://doi.org/10.1002/jat.4082
  25. Jocelyn DC, Mark H, Martin MS (2019) Application of the direct peptide reactivity assay (DPRA) to inorganic compounds: a case study of platinum species. Toxicol Res (Camb) 8:802-814. https://doi.org/10.1039/c9tx00242a
  26. Katherine AR, Aleksandr BS, Jenny RR (2019) Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 1:87-124. https://doi.org/10.1080/1547691X.2019.1605553
  27. Lepoittevin JP (2006) Metabolism versus chemical transformation or pro- versus prehaptens? Contact dermatitis. Contact Dermat 2:73-74. https://doi.org/10.1111/j.0105-1873.2006.00795.x
  28. Cho AR (2018) Skin sensitizing potentials of chemical household products through direct peptide reactivity assay. Daegu Catholic University, MA Dissertation, Daegu, Republic of Korea