DOI QR코드

DOI QR Code

Ruthenium biochanin-A complex ameliorates lung carcinoma through the downregulation of the TGF-β/PPARγ/PI3K/TNF-α pathway in association with caspase-3-mediated apoptosis

  • Ming Cao (Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University) ;
  • Bo Fan (Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University) ;
  • Tianchang Zhen (Department of Thoracic Surgery, The First Hospital Affiliated with Shandong First Medical University) ;
  • Abhijit Das (Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions) ;
  • Junling Wang (Department of Respiratory and Critical Care, The First Hospital Affiliated with Shandong First Medical University)
  • Received : 2022.12.10
  • Accepted : 2023.03.23
  • Published : 2023.07.15

Abstract

Lung cancer is the most often reported cancer with a terrible prognosis worldwide. Flavonoid metal complexes have exhibited potential chemotherapeutic effects with substantially low adverse effects. This study investigated the chemotherapeutic effect of the ruthenium biochanin-A complex on lung carcinoma in both in vitro and in vivo model systems. The synthesized organometallic complex was characterized via UV-visible spectroscopy, FTIR, mass spectrometry, and scanning electron microscopy. Moreover, the DNA binding activity of the complex was determined. The in vitro chemotherapeutic assessment was performed on the A549 cell line through MTT assay, flow cytometry, and western blot analysis. An in vivo toxicity study was performed to determine the chemotherapeutic dose of the complex, and subsequently, chemotherapeutic activity was assessed in benzo-α-pyrene-induced lung cancer mouse model by evaluating the histopathology, immunohistochemistry, and TUNEL assays. The IC50 value of the complex in A549 cells was found to be 20 µM. The complex demonstrated significant apoptosis induction, enhanced caspase-3 expression and cell cycle arrest with downregulated PI3K, PPARγ, TGF-β, and TNF-α expression in A549 cells. The in vivo study suggested that ruthenium biochanin-A therapy restored the morphological architecture of lung tissue in a benzo-α-pyrene-induced lung cancer model and inhibited the expression of Bcl2. Additionally, increased apoptotic events were identified with upregulation of caspase-3 and p53 expression. In conclusion, the ruthenium biochanin-A complex successfully amelioratedlung cancer incidence in both in vitro and in vivo models through the alteration of the TGF-β/PPARγ/PI3K/TNF-α axis with the induction of the p53/caspase-3-mediated apoptotic pathway.

Keywords

Acknowledgement

The authors are highly grateful to The First Hospital Affiliated with Shandong First Medical University for their continuous support and encouragement throughout the experiment.

References

  1. Saito S, Espinoza-Mercado F, Liu H, Sata N, Cui X, Soukiasian HJ (2017) Current status of research and treatment for non-small cell lung cancer in never-smoking females. Cancer Biol Ther 18:359-368. https://doi.org/10.1080/15384047.2017.1323580
  2. Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, Chen W (2022) Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl) 135:584-590. https://doi.org/10.1097/CM9.0000000000002108
  3. Medjakovic S, Jungbauer A (2008) Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. J Steroid Biochem Mol Biol 108:171-177. https://doi.org/10.1016/j.jsbmb.2007.10.001
  4. Migkos T, Pourova J, Voprsalova M, Auger C, Schini-Kerth V, Mladenka P (2020) Biochanin A, the most potent of 16 Isoflavones, induces relaxation of the coronary artery through the calcium channel and cGMP-dependent pathway. Planta Med 86:708-716. https://doi.org/10.1055/a-1158-9422
  5. Zhang Y, Chen WA (2015) Biochanin A inhibits lipopolysaccharide-induced inflammatory cytokines and mediators production in BV2 microglia. Neurochem Res 40:165-171. https://doi.org/10.1007/s11064-014-1480-2
  6. Liang F, Cao W, Huang Y, Fang Y, Cheng Y, Pan S, Xu X (2019) Isoflavone biochanin A, a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells. BioFactors 45:563-574. https://doi.org/10.1002/biof.1514
  7. Tan JW, Kim MK (2016) Neuroprotective effects of biochanin a against β-Amyloid-Induced neurotoxicity in PC12 cells via a mitochondrial-dependent apoptosis pathway. Molecules 21:548. https://doi.org/10.3390/molecules21050548
  8. Sklenickova O, Flesar J, Kokoska L, Vlkova E, Halamova K, Malik J (2010) Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria. Molecules 15:1270-1279. https://doi.org/10.3390/molecules15031270
  9. Breikaa RM, Algandaby MM, El-Demerdash E, Abdel-Naim AB (2013) Biochanin A protects against acute carbon tetrachloride-induced hepatotoxicity in rats. Biosci Biotechnol Biochem 77:909-916. https://doi.org/10.1271/bbb.120675
  10. Chen J, Ge B, Wang Y, Ye Y, Zeng S, Huang Z (2015) Biochanin A promotes proliferation that involves a feedback loop of microRNA-375 and estrogen receptor alpha in breast cancer cells. Cell Physiol Biochem 35:639-646. https://doi.org/10.1159/000369725
  11. Hsu YN, Shyu HW, Hu TW, Yeh JP, Lin YW, Lee LY, Yeh YT, Dai HY, Perng DS, Su SH, Huang YH, Su SJ (2018) Anti-proliferative activity of biochanin A in human osteosarcoma cells via mitochondrial-involved apoptosis. Food Chem Toxicol 112:194-204. https://doi.org/10.1016/j.fct.2017.12.062
  12. Cho IA, You SJ, Kang KR, Kim SG, Oh JS, You JS, Lee GJ, Seo YS, Kim DK, Kim CS, Lee SY, Kim JS (2017) Biochanin-A induces apoptosis and suppresses migration in FaDu human pharynx squamous carcinoma cells. Oncol Rep 38:2985-2992. https://doi.org/10.3892/or.2017.5953
  13. Ndagi U, Mhlongo N, Soliman ME (2017) Metal complexes in cancer therapy - an update from drug design perspective. Drug Des Devel Ther 11:599-616. https://doi.org/10.2147/DDDT.S119488
  14. Raj Kumar R, Ramesh R, Malecki JG (2018) Synthesis and structure of arene ruthenium(II) benzhydrazone complexes: antiproliferative activity, apoptosis induction and cell cycle analysis. J Organomet Chem 862:95-100. https://doi.org/10.1016/j.jorganchem.2018.03.013
  15. Walser T, Cui X, Yanagawa J, Lee JM, Heinrich E, Lee G, Sharma S, Dubinett SM (2008) Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc 5:811-815. https://doi.org/10.1513/pats.200809-100TH
  16. Engels EA (2008) Inflammation in the development of lung cancer: epidemiological evidence. Expert Rev Anticancer Ther 8:605-615. https://doi.org/10.1586/14737140.8.4.605
  17. Li J, Song Y, Yu B, Yu Y (2020) TNFAIP2 promotes non-small cell lung cancer cells and targeted by miR-145-5p. DNA Cell Biol 39:1256-1263. https://doi.org/10.1089/dna.2020.5415
  18. Sarris EG, Saif MW, Syrigos KN (2012) The biological role of PI3K pathway in lung cancer. Pharmaceuticals (Basel) 5:1236-1264. https://doi.org/10.3390/ph5111236
  19. Iksen PS, Pongrakhananon V (2021) Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: an update regarding potential drugs and natural products. Molecules 26:4100. https://doi.org/10.3390/molecules26134100
  20. Zhao B, Chen YG (2014) Regulation of TGF-β signal transduction. Scientifica (Cairo) 2014:874065. https://doi.org/10.1155/2014/874065
  21. Grommes C, Landreth GE, Heneka MT (2004) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5:419-429. https://doi.org/10.1016/S1470-2045(04)01509-8
  22. Nemenof RA (2007) Peroxisome proliferator-activated receptor-gamma in lung cancer: defining specific versus "of-target" effectors. J Thorac Oncol 2:989-992. https://doi.org/10.1097/JTO.0b013e318158cf0a
  23. Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R, Kohno M, Inoue K, Hla T, Kondo M (2000) Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 270:400-405. https://doi.org/10.1006/bbrc.2000.2436
  24. Fu RG, You QD, Yang L, Wu WT, Jiang C, Xu XL (2010) Design, synthesis and bioevaluation of dihydropyrazolo[3,4-b] pyridine and benzo[4,5]imidazo[1,2-a]pyrimidine compounds as dual KSP and aurora-A kinase inhibitors for anti-cancer agents. Bioorg Med Chem 18:8035-8043. https://doi.org/10.1016/j.bmc.2010.09.020
  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  26. Mohammad T, Mathur Y, Hassan MI (2021) InstaDock: a single-click graphical user interface for molecular docking-based virtual high-throughput screening. Brief Bioinform 22:bbaa279. https://doi.org/10.1093/bib/bbaa279
  27. Li Q, Yang Y, Wang X, Yang X, Zhao Y, Wu Q, Zhao Y (2022) Alternariol ameliorates lung carcinoma via reprogramming cytokine signaling associated with PI3K/Akt cascade in vitro and in vivo. Eur J Inflamm 20:1-14. https://doi.org/10.1177/1721727X221106505
  28. Maiuthed A, Chantarawong W, Chanvorachote P (2018) Lung cancer stem cells and cancer stem cell-targeting natural compounds. Anticancer Res 38:3797-3809. https://doi.org/10.21873/anticanres.12663
  29. Mucha P, Skoczynska A, Malecka M, Hikisz P, Budzisz E (2021) Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 26:4886. https://doi.org/10.3390/molecules26164886
  30. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139-163. https://doi.org/10.4161/cbt.4.2.1508
  31. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069-1075. https://doi.org/10.1038/nature07423
  32. Massion PP, Taflan PM, Shyr Y, Rahman SM, Yildiz P, Shakthour B, Edgerton ME, Ninan M, Andersen JJ, Gonzalez AL (2004) Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am J Respir Crit Care Med 170:1088-1094. https://doi.org/10.1164/rccm.200404-487OC
  33. Wu Y, Antony S, Meitzler JL, Doroshow JH (2014) Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 345:164-173. https://doi.org/10.1016/j.canlet.2013.08.014
  34. Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4:221-233. https://doi.org/10.1158/1541-7786.MCR-05-0261
  35. Szlosarek P, Charles KA, Balkwill FR (2006) Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer 42:745-750. https://doi.org/10.1016/j.ejca.2006.01.012
  36. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y (2004) Cytokines in cancer immunity and immunotherapy. Immunol Rev 202:275-293. https://doi.org/10.1111/j.0105-2896.2004.00199.x
  37. Park BH, Vogelstein B, Kinzler KW (2001) Genetic disruption of PPARdelta decreases the tumorigenicity of human colon cancer cells. Proc Natl Acad Sci USA 98:2598-2603. https://doi.org/10.1073/pnas.051630998
  38. Piqueras L, Reynolds AR, Hodivala-Dilke KM, Alfranca A, Redondo JM, Hatae T, Tanabe T, Warner TD, Bishop-Bailey D (2007) Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis. Arterioscler Thromb Vasc Biol 27:63-69. https://doi.org/10.1161/01.ATV.0000250972.83623.61
  39. Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2:466-474. https://doi.org/10.1177/1947601911408889
  40. Zhuo Z, Hu J, Yang X, Chen M, Lei X, Deng L, Yao N, Peng Q, Chen Z, Ye W, Zhang D (2015) Ailanthone inhibits Huh7 cancer cell growth via cell cycle arrest and apoptosis in Vitro and in vivo. Sci Rep 5:16185. https://doi.org/10.1038/srep16185
  41. Hotz MA, Bosq J, Zbaeren P, Reed J, Schwab G, Krajewski S, Brousset P, Borner MM (1999) Spontaneous apoptosis and the expression of p53 and Bcl-2 family proteins in locally advanced head and neck cancer. Arch Otolaryngol Head Neck Surg 125:417-422. https://doi.org/10.1001/archotol.125.4.417
  42. Hemann MT, Lowe SW (2006) The p53-Bcl-2 connection. Cell Death Differ 13:1256-1259. https://doi.org/10.1038/sj.cdd.4401962
  43. Hajrezaie M, Shams K, Moghadamtousi SZ, Karimian H, Hassandarvish P, Emtyazjoo M, Zahedifard M, Majid NA, Mohd Ali H, Abdulla MA (2015) Chemoprevention of colonic aberrant crypt foci by novel schiff based dichlorido(4-methoxy-2-{[2-(piperazin-4-ium-1-yl)ethyl]iminomethyl}phenolate)Cd complex in azoxymethane-induced colorectal cancer in rats. Sci Rep 5:12379. https://doi.org/10.1038/srep12379
  44. Paunesku T, Mittal S, Protic M, Oryhon J, Korolev SV, Joachimiak A, Woloschak GE (2001) Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol 77:1007-1021. https://doi.org/10.1080/09553000110069335