DOI QR코드

DOI QR Code

잡종 기원 녹보리똥나무와 큰보리장나무의 형태학적 및 분자적 다양성 분석 및 평가

Analysis and evaluation of morphological and molecular polymorphism in the hybridization of Elaeagnus ×maritima and E. ×submacrophylla

  • 장영종 (전남대학교 생물과학.생명기술학과) ;
  • 손동찬 (국립수목원 산림생물다양성연구과) ;
  • 이강협 (국립수목원 산림생물다양성연구과) ;
  • 이정현 (전남대학교 생물교육과) ;
  • 박범균 (국립수목원 산림생물다양성연구과)
  • Young-Jong JANG (Department of Biological Sciences and Biotechnology, Chonnam National University) ;
  • Dong Chan SON (Division of Forest Biodiversity, Korea National Arboretum of the Korea Forest Service) ;
  • Kang-Hyup LEE (Division of Forest Biodiversity, Korea National Arboretum of the Korea Forest Service) ;
  • Jung-Hyun LEE (Department of Biology Education, Chonnam National University) ;
  • Boem Kyun PARK (Division of Forest Biodiversity, Korea National Arboretum of the Korea Forest Service)
  • 투고 : 2023.04.17
  • 심사 : 2023.06.26
  • 발행 : 2023.06.30

초록

녹보리똥나무와 큰보리장나무는 형태적 특성에 기반하여 잡종 분류군으로 제안된 바 있으나, 이에 대한 분류학적 실체가 불명확하다. 본 연구에서는 녹보리똥나무와 큰보리장나무의 잡종 기원을 밝히기 위하여 현장 조사와 표본관에 소장된 표본을 검토하여 형태적 특징을 관찰하였으며, 핵리보솜 구간(internal transcribed spacer, 5S non-transcribed spacer)과 엽록체 구간(matK)의 염기서열을 비교·분석하였다. 형태적 특징을 관찰한 결과, 녹보리똥나무는 보리장나무와, 큰보리똥나무는 통영볼레나무와 형태적으로 유사성을 보였으나, 분자 분석 결과, 녹보리똥나무는 핵리보솜 구간에서 보리장나무와 보리밥나무의 서열의 혼성화가 관찰되었다. 큰보리장나무는 다양한 양상이 관찰되었는데, 일부 개체는 핵리보솜 구간에서 통영볼레나무와 보리밥나무의 서열의 혼성화가, 엽록체 구간에서는 보리밥나무 서열이 관찰되었다. 다른 개체는 핵리보솜 구간에서는 보리밥나무의 서열을 보였으나, 엽록체 구간에서는 통영볼레나무의 서열이 관찰되어 핵과 엽록체간 불일치를 보였다. 일부 개체는 통영볼레나무와 보리밥나무의 중간형을 보였으나, 핵리보솜과 엽록체 구간 모두 보리밥나무 서열이 관찰되었다. 이러한 결과는 두 종이 잡종기원이며, 부모종 또는 잡종 개체간 교배가 빈번히 일어나는 것을 시사한다.

The taxonomic identity of Elaeagnus ×maritima and E. ×submacrophylla (Elaeagnaceae) in Korea is unclear, yet they are presumed to be hybrid taxa based on their morphology. To determine their hybrid origins, a morphological analysis (field surveys and specimen examinations) and a molecular analysis involving two nuclear ribosomal DNA (nrDNA) regions (internal transcribed spacer and 5S non-transcribed spacer) and one chloroplast DNA (cpDNA) region (matK) were conducted. The morphological analysis revealed that E. ×maritima showed certain morphological similarities to E. glabra, whereas E. ×submacrophylla showed certain morphological similarities to E. pungens. However, the molecular analysis indicated that E. ×maritima exhibited additive species-specific sites of E. glabra and E. macrophylla in the nrDNA regions. Notably, E. ×submacrophylla showed various aspects, with some individuals exhibiting additive species-specific sites of E. pungens and E. macrophylla in the nrDNA and E. macrophylla sequences in the cpDNA regions, some individuals exhibiting E. macrophylla sequences in the nrDNA and E. pungens sequences in the cpDNA regions, and some individuals displaying E. macrophylla sequences in both the nrDNA and cpDNA regions, despite an intermediate morphology between E. pungens and E. macrophylla. These results indicate that these two species are of hybrid origin and frequently cross between parental and hybrid individuals.

키워드

과제정보

We are grateful to the persons concerned at the KB, SKK, and YNUH herbaria for permitting the examination of specimens, Dr. Akiko Shimizu (TI Herbarium) and Roxali Bijmoer (Naturalis Biodiversity Center) for providing images and allowing us to use, Hyeryun Jo for preparing the line drawings. This study was supported by the Korea National Arboretum (KNA1-1-18, 15-3).

참고문헌

  1. Aguilar, J. F. and G. N. Feliner. 2003. Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Molecular Phylogenetics and Evolution 28: 430-447. https://doi.org/10.1016/S1055-7903(02)00301-9
  2. Aguilar, J. F., J. A. Rossello and G. N. Feliner 1999. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Molecular Ecology 8: 1341-1346. https://doi.org/10.1046/j.1365-294X.1999.00690.x
  3. Buck, R. and L. Flores-Renteria. 2022. The syngameon enigma. Plants 11: 895.
  4. Campbell, C. S., M. F. Wojciechowski, B. G. Baldwin, L. A. Alice and M. J. Donoghue. 1997. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Molecular Biology and Evolution 14: 81-90. https://doi.org/10.1093/oxfordjournals.molbev.a025705
  5. Cannon, C. H. and R. J. Petit. 2020. The oak syngameon: More than the sum of its parts. New Phytologist 226: 978-983. https://doi.org/10.1111/nph.16091
  6. Cho, M.-S., C.-S. Kim, S.-H. Kim, T. O. Kim, K.-I. Heo, J. Jun and S.-C. Kim. 2014. Molecular and morphological data reveal hybrid origin of wild Prunus yedoensis (Rosaceae) from Jeju Island, Korea: Implications for the origin of the flowering cherry. American Journal of Botany 101: 1976-1986. https://doi.org/10.3732/ajb.1400318
  7. Darriba, D., G. L. Taboada, R. Doallo and D. Posada. 2012. jMod-elTest 2: More models, new heuristics and parallel computing. Nature Methods 9: 772.
  8. Du, Z.-Y., C.-F. Yang, J.-M. Chen and Y.-H. Guo. 2009. Nuclear and chloroplast DNA sequences data support the origin of Potamogeton intortusifolius J.B. He in China as a hybrid between P. perfoliatus Linn. and P. wrightii Morong. Aquatatic Botany 91: 47-50. https://doi.org/10.1016/j.aquabot.2009.02.006
  9. Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  10. Falistocco, E., V. Passeri and G. Marconi. 2007. Investigations of 5S rDNA of Vitis vinifera L.: Sequence analysis and physical mapping. Genome 50: 927-938. https://doi.org/10.1139/G07-070
  11. Flot, J.-F. 2010. SeqPHASE: A web tool for interconverting PHASE input/output files and FASTA sequence alignments. Molecular Ecology Resources 10: 162-166. https://doi.org/10.1111/j.1755-0998.2009.02732.x
  12. Gil, H.-Y. and S.-C. Kim. 2016. Viola woosanensis, a recurrent spontaneous hybrid between V. ulleungdoensis and V. chaerophylloides (Violaceae) endemic to Ulleung Island, Korea. Journal of Plant Research 129: 807-822. https://doi.org/10.1007/s10265-016-0830-3
  13. Hribova, E., J. Cizkova, P. Christelova, S. Taudien, E. de Langhe and J. Dolezel. 2011. The ITS1-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE 6: e17863.
  14. Karvonen, P. and O. Savolainen. 1993. Variation and inheritance of ribosomal DNA in Pinus sylvestris L.(Scots pine). Heredity 71: 614-622. https://doi.org/10.1038/hdy.1993.186
  15. Ki, K. R. 2004. Contribution of trichome morphology to the taxonomy of Korean Elaeagnus species. MS dissertation, Sungkyunkwan University, Suwon, Korea, 43 pp. (in Korean)
  16. Kokubugata, G., T. Kurihara, Y. Hirayama and K. Obata. 2011. Molecular evidence for a natural hybrid origin of Ajuga ×mixta (Lamiaceae) using ITS sequence. Bullein of the National Museum of Nature and Science, Series B 37: 175-179.
  17. Ko, S. C. 2015. Elaeagnaceae Juss. In Flora of Korea, Vol. 5b. Rosidae: Elaeagnaceae to Sapindaceae. Flora of Korea Editorial Committee (ed.), National Institute of Biological Resources, Incheon. Pp. 1-5.
  18. Koh, J. E. 2005. A taxonomy study of the Korean Elaegnus L. (Elaeagnaceae). MS dissertation, Sungkyunkwan University, Suwon, Korea, 77 pp. (in Korean)
  19. Lee, T. B. 2003. Coloured Flora of Korea. Hyangmunsa, Seoul. Vol. 1, 914 pp, Vol. 2, 910 pp. (in Korean)
  20. Lee, W. T. 1996. Coloured Standard Illustrations of Korean Plants. Academy Publishing Co, Seoul, 624 pp. (in Korean)
  21. Les, D. H., N. M. Murray and N. P. Tippery. 2009. Systematics of two imperiled pondweeds (Potamogeton vaseyi, P. gemmiparus) and taxonomic ramifications for subsection Pusilli (Potamogetonaceae). Systematic Botany 34: 643-651. https://doi.org/10.1600/036364409790139727
  22. Li, W.-P. 2006. Natural hybridization between Aster ageratoides var. scaberulus and Kalimeris indica (Asteraceae): Evidence form morphology, karyotype, and ITS sequences. Botanical Studies 47: 191-197.
  23. Liu, S.-C., C.-T. Lu and J.-C. Wang. 2009. Reticulate hybridization of Alpinia (Zingiberaceae) in Taiwan. Journal of Plant Research 122: 305-316. https://doi.org/10.1007/s10265-009-0223-y
  24. Nakai, T. 1918. Notulae ad plantas Japoniae et Koreae. 18. Botanical Magazine, Tokyo 32: 215-232.
  25. Nakai, T. 1928. Flora Sylvatica Koreana, Vol. 17. The Forestal Experiment Station Government General of Chosen, Seoul. Pp. 1-19.
  26. Nguyen, L.-T., H. A. Schmidt, A. von Haeseler and B. Q. Minh. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274. https://doi.org/10.1093/molbev/msu300
  27. Nieto Feliner, G., B. Gutierrez Larena and J. Fuertes Aguilar. 2004. Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Annals of Botany 93: 189-200. https://doi.org/10.1093/aob/mch027
  28. Ohashi, H. 2003. Notes on Elaeagnus ×submacrophylla Servett. (Elaeagnaceae). The Journal of Japanese Botany 78: 304-307. (in Japanese)
  29. Ohashi, H. and S. Yoshida. 2003. The northernmost locality of Elaeagnus ×submacrophylla Servett. (Elaeagnaceae). The Journal of Japanese Botany 78: 301-304. (in Japanese)
  30. Ohba, 1999. Elaeagnaceae. In Flora of Japan. Vol. IIc. Iwatuki, K., D. E. Boufford and H. Ohba (eds.), Kodansha, Tokyo. Pp. 152-158.
  31. Qin, H. N. and G. M. Gilbert. 2007. Elaeagnus L. In Flora of China. Vol. 13. Clusiaceae through Araliaceae. Wu, Z. Y., P. H. Raven and D. Y. Hong (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 251-270.
  32. Rambaut, A., M. A. Suchard, D. Xie and A. J. Drummond. 2014. Tracer v1. 6. Retrieved May 30, 2023, available from http://tree.bio.ed.ac.uk/software/tracer.
  33. Rieseberg, L. H., N. C. Ellstrand and M. Arnold. 1993. What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences 12: 213-241. https://doi.org/10.1080/07352689309701902
  34. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M. A. Suchard and J. P. Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. https://doi.org/10.1093/sysbio/sys029
  35. Sang, T., D. J. Crawford and T. F. Stuessy. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of the United States of America 92: 6813-6817. https://doi.org/10.1073/pnas.92.15.6813
  36. Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461-464. https://doi.org/10.1214/aos/1176344136
  37. Schwarzbach, A. E. and L. H. Rieseberg. 2002. Likely multiple origin of a diploid hybrid sunflower species. Molecular Ecology 11: 1703-1715. https://doi.org/10.1046/j.1365-294X.2002.01557.x
  38. Servettaz, C. 1909. Monographie des Elaeagnacees. Beihefte zum Botanischen Centralbatt 25: 1-420.
  39. Shin, H., S.-H. Oh, Y. Lim, C.-W. Hyun, S.-H. Cho, Y.-I. Kim and Y.-D. Kim. 2014. Molecular evidence for hybrid origin of Aster chusanensis, an endemic species of Ulleungdo, Korea. Journal of Plant Biology 57: 174-185. https://doi.org/10.1007/s12374-014-0135-9
  40. Siripun, K. C. and E. E. Schilling. 2005. Molecular confirmation of the hybrid origin of Eupatorium godfreyanum (Asteraceae). American Journal of Botany 93: 319-325. https://doi.org/10.3732/ajb.93.2.319
  41. Soley, N. M. and S. D. Sipes. 2021. Reproductive biology and pollinators of the invasive shrub Autumn olive (Elaeagnus umbellata Thunberg). Plant Species Biology 36: 170-186. https://doi.org/10.1111/1442-1984.12307
  42. Stephens, M. and P. Scheet. 2005. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. The American Journal of Human Genetics 76: 449-462. https://doi.org/10.1086/428594
  43. Stephens, M., N. J. Smith and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics 68: 978-989. https://doi.org/10.1086/319501
  44. Suh, Y., L. B. Thien, H. E. Reeve and E. A. Zimmer. 1993. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. American Journal of Botany 80: 1042-1055. https://doi.org/10.1002/j.1537-2197.1993.tb15332.x
  45. Wendel, J. F., A. Schnabel and T. Seelanan. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of the United States of America 92: 280-284. https://doi.org/10.1073/pnas.92.1.280
  46. White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications. Innis, M. A., D. H. Gelfand, J. J. Sninsky and T. J. White (eds.), Academic Press, New York. Pp. 315-322.
  47. Wojciechowski, M. F., M. Lavin and M. J. Sanderson. 2004. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. American Journal of Botany 91: 1846-1862. https://doi.org/10.3732/ajb.91.11.1846