DOI QR코드

DOI QR Code

막 형성 기술 및 특성과의 상관관계 연구 및 성능: 리뷰

Studies of the Membrane Formation Techniques and Its Correlation with Properties and Performance: A Review

  • Kumari Nikita (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Chivukula Narayana Murthy (Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda) ;
  • Sang Yong Nam (Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 투고 : 2023.06.21
  • 심사 : 2023.06.23
  • 발행 : 2023.06.30

초록

이 총설에서는 다양한 소재를 이용한 고분자 분리막의 제조를 위한 제조방식, 특성과 여러가지 인자들에 대해서 논의하고자 한다. 분리막 제조방식은 상전이, 계면중합, 연신, 트랙에칭 그리고 전기방사 같은 방법을 주로 강조하여 설명하고자 하며, 추가적으로 다양한 응용에 따른 제조방식에 대한 한계나 응용성에 대해서도 설명하고자 한다. 또한 다양한 고분자 분리막의 표면거칠기, 표면장력, 표면전하와 표면의 기능성 작용기 같은 표면특성에 대해서도 정리하였으며, 막성능의 향상을 위하여 상전이법이나 계면중합 같은 일반적인 분리막 제조공정에서 필요한 추가적인 향상방법을 나타내었다. 트랙에칭이나 전기방사와 같은 새로운 제조방법의 가능성에 대해서도 분석하였다.

In this review, the approaches, properties, and elements involved in the formation of polymeric membranes for various materials are discussed. The present research emphasizes the proficiency in several membrane formation processes such phase inversion, interfacial polymerization, stretching, track etching, and electrospinning. Additionally, the obstacles and applicability of various application manufacturing processes are addressed. Various polymeric membranes are reviewed with regard to significant surface properties such as surface roughness, surface tension, surface charge and surface functional group. Additional enhancements of popular membrane formation processes like phase inversion and interfacial polymerization are required to ensure advancements in membrane efficiency. Analysing the possibilities of modern manufacturing practices like track etching and electrospinning is also crucial.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038697) and this paper was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017310, Human Resource Development Program for Industrial Innovation(global))

참고문헌

  1. J. C. Crittenden, R. R. Trussel, D. W. Hand, K. J. Howe, and G. Tchobanoglous, "Water Treatment: principles and design", 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ (2005).
  2. M. Cheryan, "Ultrafiltration and microfiltration handbook", Technomic, Lancaster, PA (1998).
  3. M. Mulder, "Basic principles of membrane technology", Kluwer Academic Publishers, Dordrecht, Netherlands (2003).
  4. J. Xu, and R. Agrawal, "Membrane separation process analysis and design strategies based on thermodynamic efficiency of permeation", Chem. Eng. Sci., 51, 365 (1996).
  5. M. Mulder, "Basic principles of membrane technology", Springer Science & Business Media, Dordrecht, The Netherlands (2012).
  6. P. Radovanovic, S. W. Thiel, and S. T. Hwang, "Formation of asymmetric polysulfone membranes by immersion precipitation. 1. Modeling mass-transport during gelation", J. Membr. Sci., 65, 213 (1992).
  7. S. S. S. Loeb, "Sea water demineralization by means of an osmotic membrane", Mater. Sci., 38, 117 (1963).
  8. H. Strathmann, K. Kock, P. Amar, and R. W. Baker, "Formation mechanism of asymmetric membranes", Desalination, 16, 179 (1975).
  9. C. A. Smolders, A. J. Reuvers, R. M. Boom, and I. M. Wienk, "Microstructures in phaseinversion-membranes. Part 1. Formation of macrovoids", J. Membr. Sci., 73, 259 (1992).
  10. M. Ulbricht, "Advanced functional polymer membranes", Polymer, 47, 2217 (2006).
  11. Km Nikita, D. Patel, and G. Patel, "Additive manufacturing of multifunctional polymer nanocomposites: From 3 D to 4 D", p. 277, Nanotechnology-Based Additive Manufacturing: Product Design, Properties and Applications, Wiley, Weinheim, Germany (2023).
  12. H. J. Kim, R. K. Tyagi, A. E. Fouda, and K. Jonasson, "The kinetic study for asymmetric membrane formation via phase-inversion process", J. Appl. Polym. Sci., 62, 621 (1996).
  13. D. Patel, R. Vithalani, and C. K. Modi, "Highly efficient FeNP-embedded hybrid bifunctional reduced graphene oxide for Knoevenagel condensation with active methylene compounds", New J. Chem., 44, 2868 (2020).
  14. M. Amirilargani, E. Saljoughi, T. Mohammadi, and M. R. Moghbeli, "Effects of coagulation bath temperature and polyvinylpyrrolidone content on flat sheet asymmetric polyethersulfone membranes", Polym. Eng. Sci., 50, 885 (2010).
  15. Km Nikita, S. Kumar, V. K. Aswal, D. K. Kanchan, and C. N. Murthy, "Porous structure studies of the mixed matrix polymeric membranes of polyether sulfone incorporated with functionalized multiwalled carbon nanotubes", Desal. Wat. Treat., 146, 29 (2019).
  16. I. Pinnau and B. D. Freeman, "Formation and modification of polymeric membranes: overview", Membr. Form. Modif., 744, 1 (2000).
  17. W. Y. Chuang, T. H. Young, W. Y. Chiu, and C. Y. Lin, "The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes", Polymer, 41, 5633 (2000).
  18. L. Y. Lafreniere, F. D. F. Talbot, T. Matsuura, and S. Sourirajan, "Effect of polyvinylpyrrolidone additive on the performance of polyethersulfone ultrafiltration membranes", Ind. Eng. Chem. Res., 26, 2385 (1987).
  19. E. Fontananova, J. C. Jansen, A. Cristiano, E. Curcio, and E. Drioli, "Effect of additives in the casting solution on the formation of PVDF membranes", Desalination, 192, 190 (2006).
  20. H. J. Lee, J. Won, H. Lee, and Y. S. Kang, "Solution properties of poly(amic acid)-NMP containing LiCl and their effects on membrane morphologies", J. Membr. Sci., 196, 267 (2002).
  21. E. Saljoughi, M. Amirilargani, and T. Mohammadi, "Effect of poly(vinyl pyrrolidone) concentration and coagulation bath temperature on the morphology, permeability, and thermal stability of asymmetric cellulose acetate membranes", J. Appl. Polym. Sci., 111, 2537 (2009).
  22. L. Shi, R. Wang, Y. M. Cao, D. T. Liang, and J. H. Tay, "Effect of additives on the fabrication of poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes", J. Membr. Sci., 315, 195 (2008).
  23. N. A. Ochoa, P. Pradanos, L. Palacio, C. Pagliero, J. Marchese, and A. Hernandez, "Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes - characterisation of polyethersulfone UF membranes with dopes containing different PVP", J. Membr. Sci., 187, 227 (2001).
  24. M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, and K. Friedrich, "Structure property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites", Polymer, 42, 167 (2001).
  25. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review", Desalination, 308, 15 (2013).
  26. K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. L. Li, and P. J. J. Alvarez, "Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal", Water Res., 43, 715 (2009).
  27. L. Yan, Y. S. Li, C. B. Xiang, and S. Xianda, "Effect of nano-sized Al2O3-particle addition on PVDF ultratiltration membrane performance", J. Membr. Sci., 276, 162 (2006).
  28. Y. N. Yang, H. X. Zhang, P. Wang, Q. Z. Zheng, and J. Li, "The influence of nano-sized TiO2 fillers on the morphologies and properties of PSFUF membrane", J. Membr. Sci., 288, 231 (2007).
  29. Q. T. Nguyen, O. T. Alaoui, H. Yang, and C. Mbareck, "Dry-cast process for synthetic microporous membranes: physico-chemical analyses through morphological studies", J. Membr. Sci., 358, 13 (2010).
  30. J. K. Kim, K. Taki, and M. Ohshima, "Preparation of a unique microporous structure via two step phase separation in the course of drying a ternary polymer solution", Langmuir, 23, 12397 (2007).
  31. J. Zhao, G. Luo, J. Wu, and H. Xia, "Preparation of microporous silicone rubber membrane with tunable pore size via solvent evaporation-induced phase separation", ACS Appl. Mater. Interfaces, 5, 2040 (2013).
  32. G. Conoscenti, V. Carrubba, and V. Brucato, "A versatile technique to produce porous polymeric scaffolds: the thermally induced phase separation (TIPS) method", Arch. Chem. Res., 1, 1 (2017).
  33. Z. Cui, N. T. Hassankiadeh, S. Y. Lee, J. M. Lee, K. T. Woo, A. Sanguineti, V. Arcella, Y. M. Lee, and E. Drioli, "Poly (vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation", J. Membr. Sci., 444, 223 (2013).
  34. Q. Y. Wu, L. S. Wan, and Z. K. Xu, "Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation", J. Membr. Sci., 409, 355 (2012).
  35. C. Zhang, Y. Bai, Y. Sun, J. Gu, and Y. Xu, "Preparation of hydrophilic HDPE porous membranes via thermally induced phase separation by blending of amphiphilic PE-b-PEG copolymer", J. Membr. Sci., 365, 216 (2010).
  36. J. E. Cadotte, R. J. Petersen, R. E. Larson, and E. E. Erickson, "New thin-film composite seawater reverse-osmosis membrane", Desalination, 32, 25 (1980).
  37. J. Cadotte, R. Forester, M. Kim, R. Petersen, and T. Stocker, "Nanofiltration membranes broaden the use of membrane separation technology", Desalination, 70, 77 (1988).
  38. W. J. Lau, A. F. Ismail, N. Misdan, and M. A. Kassim, "A recent progress in thin film composite membrane: A review", Desalination, 287, 190 (2012).
  39. R. J. Petersen, "Composite reverse-osmosis and nanofiltration membranes", J. Membr. Sci., 83, 81 (1993).
  40. A. P. Rao, N. V. Desai, and R. Rangarajan, "Interfacially synthesized thin film composite RO membranes for seawater desalination", J. Membr. Sci., 124, 263 (1997).
  41. I. J. Roh, A. R. Greenberg, and V. P. Khare, "Synthesis and characterization of interfacially polymerized polyamide thin films", Desalination, 191, 279 (2006).
  42. A. K. Ghosh, B. H. Jeong, X. F. Huang, and E. M. V. Hoek, "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties", J. Membr. Sci., 311, 34 (2008).
  43. B. J. Abu Tarboush, D. Rana, T. Matsuura, H. A. Arafat, and R. M. Narbaitz, "Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules", J. Membr. Sci., 325, 166 (2008).
  44. S. Verissimo, K. V. Peinemann, and J. Bordado, "Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes", J. Membr. Sci., 279, 266 (2006).
  45. S. H. Huang, C. L. Li, C. C. Hu, H. A. Tsai, K. R. Lee, and J. Y. Lai, "Polyamide thin-film composite membranes prepared by interfacial polymerization for pervaporation separation", Desalination, 200, 387 (2006).
  46. A. R. Korikov, R. Kosaraju, and K. K. Sirkar, "Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films", J. Membr. Sci., 279, 588 (2006).
  47. L. Li, S. B. Zhang, X. S. Zhang, and G. D. Zheng, "Polyamide thin film composite membranes prepared from 3,4',5-biphenyl triacyl chloride, 3,3',5,5'-biphenyl tetraacyl chloride and m-phenylenediamine", J. Membr. Sci., 289, 258 (2007).
  48. L. F. Liu, S. C. Yu, L. G. Wu, and C. J. Gao, "Study on a novel antifouling polyamide-urea reverse osmosis composite membrane (ICIC-MPD) - III. Analysis of membrane electrical properties", J. Membr. Sci., 310, 119 (2008).
  49. P. R. Buch, D. J. Mohan, and A. V. R. Reddy, "Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes", J. Membr. Sci., 309, 36 (2008).
  50. T. Kawaguchi, and H. Tamura, "Chlorine-resistant membrane for reverse-osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides", J. Appl. Polym. Sci., 29, 3359 (1984).
  51. N. Misdan, W. J. Lau, and A. F. Ismail, "Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-current development, challenges and future prospects", Desalination, 287, 228 (2012).
  52. B. B. Tang, Z. B. Huo, and P. Y. Wu, "Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC) I. Preparation, characterization and nanofiltration properties test of membrane", J. Membr. Sci., 320, 198 (2008).
  53. U. Razdan and S. S. Kulkarni, "Nanofiltration thin-film-composite polyesteramide membranes based on bulky diols", Desalination, 161, 25 (2004).
  54. T. Sarada, L. C. Sawyer, and M. I. Ostler, "Three dimensional structure of celgard® microporous membranes", J. Membr. Sci., 15, 97 (1983).
  55. Km Nikita, D. Ray, V. K. Aswal, and C. N. Murthy, "Surface modification of functionalized multiwalled carbon nanotubes containing mixed matrix membrane using click chemistry", J. Memb. Sci., 596, 117710 (2020).
  56. A. A. I. A. S. Komaladewi, P. T. P. Aryanti, G. Lugito, I. W. Surata, and I. G. Wenten, "Recent progress in microfiltration polypropylene membrane fabrication by stretching method", E3S Web of Conferences, 03018, Bali, Indonesia (2018).
  57. F. Sadeghi, "Development of microporous polypropylene by stretching", Ph.D. Thesis, Polytechnique Montreal, Montreal, Canada (2006).
  58. C. Wan, T. Cao, X. Chen, L. Meng, and L. Li, "Fabrication of polyethylene nanofibrous membranes by biaxial stretching", Mater. Today Commun., 17, 24 (2018).
  59. J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioli, and Y. M. Lee, "Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods", J. Membr. Sci., 509, 94 (2016).
  60. U. Pinaeva, T. C. M. Dietz, E. Balanzat, M. Castellino, T. L. Wade, and M. C. Clochard, "Bis 2-(methacryloyloxy)ethyl phosphate radiografted into track-etched PVDF for uranium (VI) determination by means of cathodic stripping voltammetry", React. Funct. Polym., 142, 77 (2019).
  61. A. Shiohara, B. Prieto-Simon, and N. H. Voelcker, "Porous polymeric membranes: fabrication techniques and biomedical applications", J. Mater. Chem. B, 9, 2129 (2021).
  62. L. Madauss, J. Schumacher, M. Ghosh, O. Ochedowski, J. Meyer, H. Lebius, B. Ban-d'Etat, M. E. Toimil-Molares, C. Trautmann, and R. G. Lammertink, "Fabrication of nanoporous graphene/polymer composite membranes", Nanoscale, 9, 10487 (2017).
  63. T. Ma, J. M. Janot, and S. Balme, "Track-etched nanopore/membrane: from fundamental to applications", Small Methods, 4, 2000366 (2020).
  64. F. Liu, M. Wang, X. Wang, P. Wang, W. Shen, S. Ding, and Y. Wang, "Fabrication and application of nanoporous polymer ion-track membranes", Nanotechnology, 30, 052001 (2018).
  65. P. Apel, "Track etching technique in membrane technology", Radiat. Meas., 34, 559 (2001).
  66. S. Rafiei, S, Maghsoodloo, B. Noroozi, V. Mottaghitalab, and A. Haghi, "Mathematical modeling in electrospinning process of nanofibers: A detailed review", Cellul. Chem. Technol., 47, 323 (2013).
  67. B. Bera, "Literature review on electrospinning process (A fascinating fiber fabrication technique)", Imper. J. Interdiscipl. Res., 2, 972 (2016).
  68. K. Li, D. Hou, C. Fu, K. Wang, and J. Wang, "Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination", J. Environ. Sci., 75, 277 (2019).
  69. Z. Li, C. Wang and O. D. Nanostructures, "One-dimensional nanostructures: Electrospinning technique and unique nanofibers", Springer, London (2013).
  70. C. J. Anandharamakrishnan, "Electrospinning and electrospraying techniques: potential food based applications", Trends Food Sci. Technol., 38, 21 (2014).
  71. Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, and X. Zhang, "Developments of advanced electrospinning techniques: A critical review", Adv. Mater. Technol., 6, 2100410 (2021).
  72. A. Maria Din'a, H. Georg, and G. Rolf, "Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions", Separ. Purif. Technol., 529, 22 (2001).
  73. M. R. De Guzman, C. K. A. Andra, M. B. M. Y Ang, G. V. C. Dizon, A. R. Caparanga, S. H. Huang, and K. R. Lee, "Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation", J. Membr. Sci., 620, 118881 (2021).
  74. Km Nikita, P. Karkare, D. Ray, V. K. Aswal, P. S. Singh, and C. N. Murthy, "Understanding the morphology of MWCNT/PES mixed-matrix membranes using SANS: Interpretation and rejection performance", Appl. Water Sci., 9, 1 (2019).
  75. Z. Wang, J. Jin, D. Hou, and S. Lin, "Tailoring surface charge and wetting property for robust oil-fouling mitigation in membrane distillation", J. Membr. Sci., 516, 113 (2016).
  76. A. E. Childress and M. Elimelech, "Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes", J. Membr. Sci., 119, 253 (1996).
  77. Km Nikita, D. S. Chivukula, and C. N. Murthy, "Uniquely modified polyether sulphone and f-CNTs Mixed Matrix Membranes for enhanced water transport& reduced biofouling", Desal. Wat. Treat., 245, 16 (2022).
  78. E. M. Vrijenhoek, S. Hong, and M. Elimelech, "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes", J. Membr. Sci., 188, 115 (2001).
  79. W. R. Bowen, and T. A. Doneva, "Atomic force microscopy studies of membranes: Effect of surface roughness on double-layer interactions and particle adhesion", J. Colloid Interface Sci., 229, 544 (2000).
  80. K. Boussu, A. Belpaire, A. Volodin, C. Van Haesendonck, P. Van der Meeren, C. Vandecasteele, and B. Van der Bruggen, "Influence of membrane and colloid characteristics on fouling of nanofiltration membranes", J. Membr. Sci., 289, 220 (2007).
  81. N. Park, B. Kwon, I. S. Kim, and J. W. Cho, "Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters", J. Membr. Sci., 258, 43 (2005).
  82. S. Y. Kwak, and D. W. Ihm, "Use of atomic force microscopy and solid-state NMR spectroscopy to characterize structure-property-performance correlation in high flux reverse osmosis (RO) membranes", J. Membr. Sci., 158, 143 (1999).
  83. D. F. Stamatialis, C. R. Dias, and M. N. de Pinho, "Atomic force microscopy of dense and asymmetric cellulose-based membranes", J. Membr. Sci., 160, 235 (1999).
  84. G. Z. Ramon, and E. M. V. Hoek, "Transport through composite membranes, part 2: impacts of roughness on permeability and fouling", J. Membr. Sci., 425, 141 (2013).
  85. S. Al-Jeshi, and A. Neville, "An investigation into the relationship between flux and roughness on RO membranes using scanning probe microscopy", Desalination, 189, 221 (2006).
  86. X. Jin, X. F. Huang, and E. M. V. Hoek, "Role of specific ion interactions in seawater RO membrane fouling by alginic acid", Environ. Sci. Technol., 43, 3580 (2009).
  87. K. Darcovich, and O. Kutowy, "Surface tension considerations for membrane casting systems", J. Appl. Polym. Sci., 35, 1769 (1988).
  88. S. Goh, J. Zhang, Y. Liu, and A. G. Fane, "Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation", Desalination, 323, 39 (2013).
  89. E. J. Lee, B. J. Deka, and A. K. An, "Reinforced superhydrophobic membrane coated with aerogel-assisted polymeric microspheres for membrane distillation", J. Membr. Sci., 573, 570 (2019)
  90. K. J. Lu, Y. Chen, and T. S. Chung, "Design of omniphobic interfaces for membrane distillation-a review", Water Res., 162, 64 (2019).
  91. A. Bernal-Ball'en, I. Kuritka, and P. Saha, "Preparation and characterization of a bioartificial polymeric material: Bilayer of cellulose acetatePVA", Int. J. Polym. Sci., 2016 (2016).
  92. X. Yu, X. Mi, Z. He, M. Meng, H. Li, and Y. Yan, "Fouling resistant CA/PVA/TiO2 imprinted membranes for selective recognition and separation salicylic acid from waste water", Front. Chem., 5, 2 (2017).
  93. E. Fontananova, V. Grosso, S. A. Aljlil., M. A. Bahattab, D. Vuono, F. P. Nicoletta, E. Curcio, E. Drioli, and G. D. Profio, "Effect of functional groups on the properties of multiwalled carbon nanotubes/polyvinylidenefluoride composite membranes", J. Membr. Sci., 541, 198 (2017).
  94. G. M. Patel, V. Shah, J. Bhaliya, P. Pathan, and Km Nikita, "Polymer-based nanomaterials: An introduction", Smart Polymer Nanocomposites, pp. 27-59, Elsevier, Gujarat, India (2023).
  95. J. G. A. Bitter, "Effect of crystallinity and swelling on the permeability and selectivity of polymer membranes", Desalination, 51, 19 (1984).
  96. S. G. Gholap, J. P. Jog, and M. V. Badiger, "Synthesis and characterization of hydrophobically modified poly(vinyl alcohol) hydrogel membrane", Polymer, 45, 5863 (2004).
  97. S. J. Lue, D. T. Lee, J. Y. Chen, C. H. Chiu, C. C. Hu, Y. C. Jean, and J. Y. Lai, "Diffusivity enhancement of water vapor in poly(vinyl alcohol)-fumed silica nano-composite membranes: correlation with polymer crystallinity and free-volume properties", J. Membr. Sci., 325, 831 (2008).
  98. L. Y. Yu, Z. L. Xu, H. M. Shen, and H. Yang, "Preparation and characterization of PVDF- SiO2 composite hollow fiber UF membrane by sol-gel method", J. Membr. Sci., 337, 257 (2009).
  99. F. Peng, Z. Jiang, and E. M. V. Hoek, "Tuning the molecular structure, separation performance and interfacial properties of poly(vinyl alcohol)-poly-sulfone interfacial composite membranes", J. Membr. Sci., 368, 26 (2011).
  100. M. Minelli, M.G. Baschetti, F. Doghieri, M. Ankerfors, T. Lindstrom, I. Siro, and D. Plackett, "Investigation of mass transport properties of microfibrillated cellulose (MFC) films", J. Membr. Sci., 358, 67 (2010).
  101. S. R. Ravichandran, C. D. Venkatachalam, M. Sengottian, S. Sekar, B. S. S. Ramasamy, M. Narayanan, A. V. Gopalakrishnan, S. Kandasamy, and R. Raja, "A review on fabrication, characterization of membrane and the influence of various parameters on contaminant separation process", Chemosphere, 306, 135629 (2022).
  102. B. S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal, "A review on membrane fabrication: Structure, properties and performance relationship", Desalination, 326, 77 (2013)