참고문헌
- E. Kim and R. Patel, "A review on lithium recovery by membrane process", Membr. J., 31, 315 (2021).
- Y. Li, Z.-L. Ye, R. Yang, and S. Chen, "Synchronously recovering different nutrient ions from wastewater by using selective electrodialysis", Water Sci. Technol., 86, 2627 (2022).
- R. Parnamae, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H. V. M. Hamelers, and M. Tedesco, "Bipolar membranes: A review on principles, latest developments, and applications", J. Membr. Sci., 617, 118538 (2021).
- T. Chen, J. Bi, Z. Ji, J. Yuan, and Y. Zhao, "Application of bipolar membrane electrodialysis for simultaneous recovery of high-value acid/alkali from saline wastewater: An in-depth review", Water Res., 226, 119274 (2022).
- Q. Ma, J. Mu, X. Lv, J. Meng, H. Cui, Y. Qiu, H. Ruan, and J. Shen, "Sustainable recovery of ionic resources from resin regeneration wastewater: Long-term evaluation, membrane fouling analysis, and cleaning", ACS ES&T Water, (2022).
- M. Manohar, A. K. Das, and V. K. Shahi, "Efficient bipolar membrane with functionalized graphene oxide interfacial layer for water splitting and converting salt into acid/base by electrodialysis", Ind. Eng. Chem. Res., 57, 1129 (2018).
- J. Ying, Y. Lin, Y. Zhang, Y. Jin, X. Li, Q. She, H. Matsuyama, and J. Yu, "Mechanistic insights into the degradation of monovalent selective ion exchange membrane towards long-term application of real salt lake brines", J. Membr. Sci., 652, 120446 (2022).
- S. Zhang, S. Wang, Z. Guo, Z. Ji, Y. Zhao, X. Guo, J. Liu, and J. Yuan, "Selective electrodialysis process for the separation of potassium: Transmembrane transport of ions in multicomponent solution systems", Sep. Purif. Technol., 300, 121926 (2022).
- Y. Zhang, Y. Lin, J. Ying, W. Zhang, Y. Jin, H. Matsuyama, and J. Yu, "Highly efficient monovalent ion transport enabled by ionic crosslinking-induced nanochannels", AIChE J., 68, e179825 (2022).
- T. Chen, J. Bi, Y. Zhao, Z. Du, X. Guo, J. Yuan, Z. Ji, J. Liu, S. Wang, F. Li, and J. Wang, "Carbon dioxide capture coupled with magnesium utilization from seawater by bipolar membrane electrodialysis", Sci. Total Environ., 820, 153272 (2022).
- Y. J. Kim, C. W. Hwang, M. H. Jeong, and T. S. Hwang, "Design of flow through continuous deionization system for indium recovery", Sep. Purif. Technol., 176, 200 (2017).
- K. Ghyselbrecht, B. Sansen, A. Monballiu, Z.-L. Ye, L. Pinoy, and B. Meesschaert, "Cationic selectrodialysis for magnesium recovery from seawater on lab and pilot scale", Sep. Purif. Technol., 221, 12 (2019).
- S. G. Lee, M. Y. Kim, W. W. So, K. S. Kang, and K. J. Kim, "Crosslinking of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes", Membr. J., 28, 326 (2018).
- W. Ye, J. Huang, J. Lin, X. Zhang, J. Shen, P. Luis, and B. Van der Bruggen, "Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: Conditioning NaOH as a CO2 absorbent", Sep. Purif. Technol., 144, 206 (2015).
- F. M. Baena-Moreno, F. Vega, L. Pastor-Perez, T. R. Reina, B. Navarrete, and Z. Zhang, "Novel process for carbon capture and utilization and saline wastes valorization", J. Nat. Gas Sci. Eng., 73, 103071 (2020).
- Q. B. Chen, J. Wang, Y. Liu, J. Zhao, P. F. Li, and Y. Xu, "Sustainable disposal of seawater brine by novel hybrid electrodialysis system: Fine utilization of mixed salts", Water Res., 201, 117335 (2021).
- W. Gao, Q. Fang, H. Yan, X. Wei, and K. Wu, "Recovery of acid and base from sodium sulfate containing lithium carbonate using bipolar membrane electrodialysis", Membr., 11, 152 (2021).
- S. H. Kwon and J. W. Rhim, "Study on acid/base formation by using sulfonated polyether ether ketone/aminated polysulfone bipolar membranes in water splitting electrodialysis", Ind. Eng. Chem. Res., 55, 2128 (2016).
- X. Liu, X. Song, X. Jian, H. Yang, X. Mao, and Z. Liang, "A BiOCl/bipolar membrane as a separator for regenerating NaOH in water-splitting cells", RSC Adv., 6, 9880 (2016).
- N. H. Rathod, J. Sharma, S. K. Raj, V. Yadav, A. Rajput, and V. Kulshrestha, "Fabrication of a stable and efficient bipolar membrane by incorporation of nano-MoS2 interfacial layer for conversion of salt into corresponding acid and alkali by water dissociation using electrodialysis", ACS Sustainable Chem. Eng., 8, 13019 (2020).
- K. Song, S. C. Chae, and J. H. Bang, "Separation of sodium hydroxide from post-carbonation brines by bipolar membrane electrodialysis (BMED)", Chem. Eng. J., 423, 130179 (2021).
- J. Yao, L. Yang, Z. Ye, J. Wang, Y. Li, and X. Tong, "Process optimization of industrial waste salts separated into acid/base for the realization of resource utilization by bipolar membrane electrodialysis", Desalin. Water Treat., 172, 377 (2019).
- M. Li, M. Sun, W. Liu, X. Zhang, C. Wu, and Y. Wu, "Quaternized graphene oxide modified PVA-QPEI membranes with excellent selectivity for alkali recovery through electrodialysis", Chem. Eng. Res. Des., 153, 875 (2020).
- A. K. Singh, M. Bhushan, and V. K. Shahi, "Alkaline stable thermal responsive cross-linked anion exchange membrane for the recovery of NaOH by electrodialysis", Desalination, 494, 114651 (2020).
- C. Wang, J. Liao, J. Li, Q. Chen, H. Ruan, and J. Shen, "Alkaline enrichment via electrodialysis with alkaline stable side-chain-type polysulfone-based anion exchange membranes", Sep. Purif. Technol., 275, 119075 (2021).
- O. Kozaderova, "Chromium-modified heterogeneous bipolar membrane: Structure, characteristics, and practical application in electrodialysis", Membr., 13, 172 (2023).