DOI QR코드

DOI QR Code

식물 유용 방선균 2종의 배양 및 포자생성 최적화 조건 탐색

Optimization of Culture and Sporulation for Two Plant Beneficial Streptomyces Strains

  • 김다란 (경상국립대학교 생명과학연구원) ;
  • 곽연식 (경상국립대학교 생명과학연구원)
  • Da-Ran Kim (Resarch Institute of Life Science, Gyeongsang National University) ;
  • Youn-Sig Kwak (Resarch Institute of Life Science, Gyeongsang National University)
  • 투고 : 2023.04.24
  • 심사 : 2023.05.20
  • 발행 : 2023.06.30

초록

관행적 화학농약의 식물병 관리 및 치료의 한계적인 효과는 유익한 세균이나 미생물을 이용한 식물병 제어 방법 개발의 필요성을 나타낸다. 지속 가능한 농업은 특히 다양한 항생물질과 이차 대사 생성물을 생산하는 방선균의 농업적 중요성을 시사하며, Streptomyces globiosporus SP6C4균주와 Streptomyces sp. S8은 강력한 항균 작용을 가지고 있으며, 지속가능한 농업에서 작물 생장을 개선하기 위한 우수한 균주로 인정되고 있다. 본 연구에서는 다양한 질소원과 탄소원을 활용하여 대상 미생물 Streptomyces 두 균주의 생장을 촉진시키는 방법을 조사하였다. L-글루타민과 L-시스테인이 첨가된 조건에서 S. globiosporus SP6C4와 Streptomyces sp. S8 균주의 포자 생성 능력이 증가하였으며, 각 균주의 생장이 촉진되었다. 이러한 결과는 유용 미생물의 대량배양 기술의 범위 확장과 농업미생물의 실용화에 기여할 것으로 생각된다.

The limited effectiveness of current plant disease management treatments necessitates the development of new methods for controlling diseases using beneficial microbes. Demanding sustainable agriculture is increasingly highlighted as a biocontrol approach, particularly Streptomyces species known to produce a variety of antibiotic compounds and secondary metabolites. The Streptomyces globisporus SP6C4 strain and Streptomyces sp. S8 have been reported as potent antifungal agents and are gaining attention for improving crop growth in sustainable agriculture. In this study, we investigated the use of Streptomyces species formulations to enhance bacterial growth with nitrogen sources. Specifically, the addition of L-glutamic acid and L-cysteine resulted in earlier sporulation and bacterial growth in Streptomyces strains, respectively. This approach could expand the range of fermentation techniques in agriculture and be useful for controlling plant growth-promoting bacteria.

키워드

과제정보

This research was supported by an agenda research program by the Rural Development Administration (PJ015871).

참고문헌

  1. Andleeb, S., Shafique, I., Naseer, A., Abbasi, W. A., Ejaz, S., Liaqat, I. et al. 2022. Molecular characterization of plant growth-promoting vermi-bacteria associated with Eisenia fetida gastrointestinal tract. PLoS ONE 17: e0269946.
  2. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A.-M., Challis, G. L., Thomson, N. R., James, K. D. et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  3. Berkelmann, D., Schneider, D., Hennings, N., Meryandini, A. and Daniel, R. 2020. Soil bacterial community structures in relation to different oil palm management practices. Sci. Data 7: 421.
  4. Bintarti, A. F., Sulesky-Grieb, A., Stopnisek, N. and Shade, A. 2022. Endophytic microbiome variation among single plant seeds. Phytobiomes J. 6: 45-55. https://doi.org/10.1094/PBIOMES-04-21-0030-R
  5. Bokhari, A., Essack, M., Lafi, F. F., Andres-Barrao, C., Jalal, R., Alamoudi, S. et al. 2019. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci. Rep. 9: 18154.
  6. Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., et al. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10: 119-129. https://doi.org/10.1038/ismej.2015.95
  7. Chen, S., Chen, X. and Xu, J. 2016. Impacts of climate change on agriculture: evidence from China. J. Environ. Econ. Manage. 76: 105-124. https://doi.org/10.1016/j.jeem.2015.01.005
  8. Costa, E., Teixido, N., Usall, J., Atares, E. and Vinas, I. 2002. The effect of nitrogen and carbon sources on growth of the biocontrol agent Pantoea agglomerans strain CPA-2. Lett. Appl. Microbiol. 35:117-120. https://doi.org/10.1046/j.1472-765X.2002.01133.x
  9. Deshpande, B. S., Ambedkar, S. S. and Shewale, J. G. 1988. Biologically active secondary metabolites from Streptomyces. Enzyme Microb. Technol. 10: 455-473. https://doi.org/10.1016/0141-0229(88)90023-3
  10. Ducray, H. A. G., Globa, L., Pustovyy, O., Morrison, E., Vodyanoy, V. and Sorokulova, I. 2019. Yeast fermentate prebiotic improves intestinal barrier integrity during heat stress by modulation of the gut microbiota in rats. J. Appl. Microbiol. 127: 1192-1206. https://doi.org/10.1111/jam.14361
  11. Du, J., Li, Y., Ur-Rehman, S., Mukhtar, I., Yin, Z., Dong, H. et al. 2021. Synergistically promoting plant health by harnessing synthetic microbial communities and prebiotics. iScience 24: 102918.
  12. Fidan, O. and Zhan, J. 2019. Discovery and engineering of an endophytic Pseudomonas strain from Taxus chinensis for efficient production of zeaxanthin diglucoside. J. Biol. Eng. 13: 66.
  13. Harir, M., Bendif, H., Bellahcene, M., Fortas, Z. and Pogni, R. 2018. Streptomyces secondary metabolites. In: Basic Biology and Applications of Actinobacteria, ed. by S. Enany, pp. 99-122. IntechOpen, London, UK.
  14. Hannula, S. E., Zhu, F., Heinen, R. and Bezemer, T. M. 2019. Foliarfeeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10: 1254.
  15. Herrera-Quiterio, A., Toledo-Hernandez, E., Aguirre-Noyola, J. L., Romero, Y., Ramos, J., Palemon-Alberto, F. et al. 2020. Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico. Rev. Argent. Microbiol. 52: 231-239. https://doi.org/10.1016/j.ram.2019.08.003
  16. Jagermeyr, J., Robock, A., Elliott, J., Muller, C., Xia, L., Khabarov, N., et al. 2020. A regional nuclear conflict would compromise global food security. Proc. Natl. Acad. Sci. U. S. A. 117: 7071-7081. https://doi.org/10.1073/pnas.1919049117
  17. Jeon, C.-W., Kim, D.-R. and Kwak, Y.-S. 2019. Valinomycin, produced by Streptomyces sp. S8, a key antifungal metabolite in large patch disease suppressiveness. World J. Microbiol. Biotechnol. 35: 128.
  18. Jung, Y.-J., Joung, Y. and Ahn, T.-S. 2011. Characterization of Actinomyces isolated from freshwater sponges in lake Baikal. Korean J. Microbiol. 47: 130-136.
  19. Kalaiyarasi, M., Ahmad, P. and Vijayaraghavan, P. 2020. Enhanced production antibiotics using green gram husk medium by Streptomyces sp. SD1 using response surface methodology. J. King Saud Univ. Sci. 32: 2134-2141. https://doi.org/10.1016/j.jksus.2020.02.014
  20. Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C., et al. 2019a. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10: 4802.
  21. Kim, D.-R., Jeon, C.-W., Cho, G., Thomashow, L. S., Weller, D. M., Paik, M.-J. et al. 2021. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome 9: 244.
  22. Kim, D.-R., Jeon, C.-W., Shin, J.-H., Weller, D. M., Thomashow, L. and Kwak, Y. S. 2019b. Function and distribution of a lantipeptide in strawberry Fusarium wilt disease-suppressive soils. Mol. Plant-Microbe Interact. 32: 306-312. https://doi.org/10.1094/MPMI-05-18-0129-R
  23. Kim, M.-J., Chae, D.-H., Cho, G., Kim, D.-R. and Kwak, Y.-S. 2019c. Characterization of antibacterial strains against kiwifruit bacterial canker pathogen. Plant Pathol. J. 35: 473-485. https://doi.org/10.5423/PPJ.OA.05.2019.0154
  24. Lau, J. A., Lennon, J. T. and Heath, K. D. 2017. Trees harness the power of microbes to survive climate change. Proc. Natl. Acad. Sci. U. S. A. 114: 11009-11011. https://doi.org/10.1073/pnas.1715417114
  25. Lee, J. H., Lee, Y. S. and Kim, Y. C. 2021. Effect of temperature and culture media composition on sporulation, mycelial growth, and antifungal activity of Isaria javanica pf185. Res. Plant Dis. 27: 99-106. https://doi.org/10.5423/RPD.2021.27.3.99
  26. Lee, N., Hwang, S., Kim, J., Cho, S., Palsson, B. and Cho, B.-K. 2020. Mini review: genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 18: 1548-1556. https://doi.org/10.1016/j.csbj.2020.06.024
  27. Lindow, S. E. and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69: 1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
  28. Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., et al. 2018. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6: 231.
  29. Mostafa, S. A. 1979. Activity of L-asparaginase in cells of Streptomyces karnatakensis. Zentralbl. Bakteriol. Natuwiss. 134: 343-351. https://doi.org/10.1016/S0323-6056(79)80007-5
  30. Oviedo-Pereira, D. G., Lopez-Meyer, M., Evangelista-Lozano, S., Sarmiento-Lopez, L. G., Sepulveda-Jimenez, G. and Rodriguez-Monroy, M. 2022. Enhanced specialized metabolite, trichome density, and biosynthetic gene expression in Stevia rebaudiana (Bertoni) Bertoni plants inoculated with endophytic bacteria Enterobacter hormaechei. PeerJ 10: e13675.
  31. Padilla, G., Hindle, Z., Callis, R., Corner, A., Ludovice, M., Liras, P. et al. 1991. The relationship between primary and secondary metabolism in Streptomycetes. In: Genetics and Product Formation in Streptomyces, eds. by S. Baumberg, H. Krugel and D. Noack, pp. 35-45. Federation of European Microbiological Societies Symposium Series, Vol. 55. Springer, Boston, MA.
  32. Park, J.-K., Kim, J., Lee, C.-W., Song, J., Seo, S.-I., Bong, K.-M. et al. 2019. Mass cultivation and characterization of multifunctional Bacillus velezensis GH1-13. Korean J. Org. Agric. 27: 65-76. https://doi.org/10.11625/KJOA.2019.27.1.65
  33. Park, J.-K., Seo, S.-I., Han, G. H., Kim, K.-M., Kim, D.-H., Song, J. et al. 2018. Development of practical media and fermentative technique for mass cultivation from agricultural and livestock microorganism. Trends Agric. Life Sci. 56: 23-33. https://doi.org/10.29335/tals.2018.56.23
  34. Patel, D. and Parmar, P. 2013. Isolation and screening of phosphate solubilizing bacteria from sunflower rhizosphere. Glob. J. Biosci. Biotechnol. 2: 438-441.
  35. Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. and Fierer, N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12: 2885-2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x
  36. Reese, A. T., Pereira, F. C., Schintlmeister, A., Berry, D., Wagner, M., Hale, L. P. et al. 2018. Microbial nitrogen limitation in the mammalian large intestine. Nat. Microbiol. 3: 1441-1450. https://doi.org/10.1038/s41564-018-0267-7
  37. Rico, A. and Preston, G. M. 2008. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol. Plant-Microbe Interact. 21: 269-282. https://doi.org/10.1094/MPMI-21-2-0269
  38. Ripa, E. A., Nikkon, K., Zaman, S. and Khondkar, P. 2009. Optimal conditions for antimicrobial metabolites production from a new Streptomyces sp. RUPA-08PR isolated from Bangladeshi soil. Mycobiology 37: 211-214. https://doi.org/10.4489/MYCO.2009.37.3.211
  39. Rodriguez, P. A., Rothballer, M., Chowdhury, S. P., Nussbaumer, T., Gutjahr, C. and Falter-Braun, P. 2019. Systems biology of plant-microbiome interactions. Mol. Plant 12: 804-821. https://doi.org/10.1016/j.molp.2019.05.006
  40. Voelker, F. and Altaba, S. 2001. Nitrogen source governs the patterns of growth and pristinamycin production in 'Streptomyces pristinaespiralis'. Microbiology 147: 2447-2459. https://doi.org/10.1099/00221287-147-9-2447
  41. Xiong, C., Singh, B. K., He, J.-Z., Han, Y.-L., Li, P.-P., Wan, L.-H., et al. 2021. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9: 171.
  42. Yague, P., Lopez-Garcia, M. T., Rioseras, B., Sanchez, J. and Manteca, A. 2012. New insights on the development of Streptomyces and their relationships with secondary metabolite production. Curr. Trends Microbial. 8: 65-73.
  43. Xu, Y., Ge, Y., Song, J. and Rensing, C. 2019. Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biol. Fertil. Soils 56: 249-260. https://doi.org/10.1007/s00374-019-01406-2