DOI QR코드

DOI QR Code

Evaluation of Resistance of Phytopathogenic Bacteria to Agricultural Antibiotics

채소 재배에서 사용하는 농용 항생제에 대한 주요 식물병원세균의 저항성 평가

  • Ji-Yeon Kim (Department of Food and Nutrition, Chung-Ang University) ;
  • Kwang-Hyun Baek (Department of Biotechnology, Yeungnam University) ;
  • Sun-Young Lee (Department of Food and Nutrition, Chung-Ang University)
  • Received : 2023.05.08
  • Accepted : 2023.06.16
  • Published : 2023.06.30

Abstract

Agricultural antibiotics are widely used to inhibit the growth of phytopathogenic bacteria involved in plant diseases. However, continuous antibiotic overuse in crop production may lead to the development of antibiotic resistance in phytopathogenic bacteria. This study was conducted to evaluate the resistance to three different agricultural antibiotics (oxytetracycline+streptomycin, streptomycin, and validamycin A) in 91 strains of phytopathogenic bacteria including Pectobacterium carotovorum, Pseudomonas syringae pv. actinidiae, Clavibacter michiganensis subsp. michiganensis, C. michiganensis subsp. capsici, and Xanthomonas arboricola pv. pruni. Bacterial growth in the presence of various concentrations of validamycin A was also assessed spectrophotometrically by analyzing the optical density. All strains did not grow when the cells were exposed to oxytetracycline+streptomycin or 100× of streptomycin. However, among the 91 strains, 4% and 2% strains showed bacterial growth at the concentrations of 1× and 10× of streptomycin, respectively. Furthermore, 97%, 93%, and 73% strains were resistant to the 1×, 10×, and 100× of validamycin A, respectively, and especially, P. carotovorum contained the highest resistance to the validamycin A. Minimum bactericidal concentration values of validamycin A did not correlate with the patterns of agricultural antibiotic resistance. Further studies are needed to understand the incidence and development of antibiotic resistance in phytopathogenic bacteria.

본 연구에서는 시중에 판매되고 있는 3종의 농용 항생제를 대상으로 Pectobacterium carotovorum, Pseudomonas syringae pv. actinidiae, Clavibacter michiganensis subsp. michiganensis, C. michiganensis subsp. capsici 및 Xanthomonas arboricola pv. pruni를 포함하는 식물병원세균 91 균주에 대한 저항성을 평가하였으며 다양한 농도의 발리다마이신에이 단독성분에 의한 흡광도 측정을 통해 분광학적으로 균주 생장을 확인하였다. 주성분으로 옥시테트라사이클린과 스트렙토마이신이 합제된 농용 항생제의 경우 안전사용기준 농도의 100배에서도 모든 균주가 생장하지 않았다. 그러나 스트렙토마이신이 주성분인 농용 항생제의 경우 안전사용농도와 그 10배의 농도에서 91개 균주 중 각각 4%와 2%에서 생장하는 것으로 나타났다. 또한 발리다마이신에이의 경우에는 안전사용농도와 그 10배, 100배의 농도에서 각각 97%, 93%, 73%의 균주가 저항성을 가지는 것으로 확인되었으며 그 중에서도 특히 P. carotovorum이 발리다마이신에이에 가장 높은 저항성을 가지는 것으로 나타났다. 발리다마이신에이 단독성분을 통한 저항성을 확인한 결과, 농용 항생제 발리다마이신에이에 저항성을 가지는 균주와 가지지 않는 균주 간의 경향성은 보이지 않는 것으로 나타났다. 그러므로, 식물병원세균에서 항생제 저항성 발달을 이해하기 위한 추가적인 연구가 필요할 것으로 생각된다.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01572602)" Rural Development Administration, Republic of Korea.

References

  1. Bian, C., Duan, Y., Wang, J., Xiu, Q., Wang, J., Hou, Y. et al. 2020. Validamycin A induces broad-spectrum resistance involving salicylic acid and jasmonic acid/ethylene signaling pathways. Mol. Plant-Microbe Interact. 33: 1424-1437. https://doi.org/10.1094/MPMI-08-20-0211-R
  2. Dixit, A., Kumar, N., Kumar, S. and Trigun, V. 2019. Antimicrobial resistance: progress in the decade since emergence of New Delhi metallo-β-lactamase in India. Indian J. Community Med. 44: 4-8. https://doi.org/10.4103/ijcm.IJCM_217_18
  3. Karlsson, M., Oxberry, S. L. and Hampson, D. J. 2002. Antimicrobial susceptibility testing of Australian isolates of Brachyspira hyodysenteriae using a new broth dilution method. Vet. Microbiol. 84: 123-133. https://doi.org/10.1016/S0378-1135(01)00444-8
  4. Kim, D., Kim, N., Kim, C., Jeong, M.-I., Oh, K. K., Kim, B.-E. et al. 2021. Investigation of antimicrobial minimum inhibitory concentration of Pectobacterium spp. isolated from agricultural produce. Korean J. Pestic. Sci. 25: 333-342. (In Korean) https://doi.org/10.7585/kjps.2021.25.4.333
  5. Kim, G. H. and Koh, Y. J. 2018. Diagnosis and control of major leaf diseases on kiwifruit in Korea. Res. Plant Dis. 24: 1-8. (In Korean) https://doi.org/10.5423/RPD.2018.24.1.1
  6. Koh, Y. J., Kim, G. H. and Jung, J. S. 2017. A proposed manual for the efficient management of kiwifruit bacterial canker in Korea. Res. Plant Dis. 23: 1-18. (In Korean) https://doi.org/10.5423/RPD.2017.23.1.1
  7. Kurenbach, B., Hill, A. M., Godsoe, W., Van Hamelsveld, S. and Heinemann, J. A. 2018. Agrichemicals and antibiotics in combination increase antibiotic resistance evolution. PeerJ 6: e5801.
  8. Lee, D.-W., Jun, L.-J. and Jeong, J.-B. 2017. Distribution of tetracycline resistance genes in pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus) in Jeju in 2016. J. Fish Mar. Sci. Educ. 29: 834-846. (In Korean) https://doi.org/10.13000/JFMSE.2017.29.3.834
  9. Lee, E. J., Park, J., Lee, G. and Kim, D.-S. 2019. The use of broad-spectrum antibiotics and antibiotics to treat antimicrobial-resistant bacteria. Yakhak Hoeji 63: 43-53. (In Korean) https://doi.org/10.17480/psk.2019.63.1.43
  10. Lee, Y. S., Kim, G. H., Koh, Y. J. and Jung, J. S. 2022. Mutation of rpsL gene in streptomycin-resistant Pseudomonas syringae pv. actinidiae biovar 3 strains isolated from Korea. Res. Plant Dis. 28: 26-31. https://doi.org/10.5423/RPD.2022.28.1.26
  11. Lee, Y. S., Kim, G. H., Song, Y.-R., Oh, C.-S., Koh, Y. J. and Jung, J. S. 2020. Streptomycin resistant isolates of Pseudomonas syringae pv. actinidiae in Korea. Res. Plant Dis. 26: 44-47. (In Korean) https://doi.org/10.5423/RPD.2020.26.1.44
  12. Louvado, A., Coelho, F. J. R. C., Domingues, P., Santos, A. L., Gomes, N. C. M., Almeida, A. et al. 2012. Isolation of surfactant-resistant pseudomonads from the estuarine surface microlayer. J. Microbiol. Biotechnol. 22: 283-291. https://doi.org/10.4014/jmb.1110.10041
  13. Mann, A., Nehra, K., Rana, J. S. and Dahiya, T. 2021. Antibiotic resistance in agriculture: perspectives on upcoming strategies to overcome upsurge in resistance. Curr. Res. Microb. Sci. 2: 100030.
  14. Serwecinska, L. 2020. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water 12: 3313.
  15. Srichamnong, W., Kalambaheti, N., Woskie, S., Kongtip, P., Sirivarasai, J. and Matthews, K. R. 2021. Occurrence of antibiotic-resistant bacteria on hydroponically grown butterhead lettuce (Lactuca sativa var. capitata). Food Sci. Nutr. 9: 1460-1470. https://doi.org/10.1002/fsn3.2116
  16. Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 31: 199-210. https://doi.org/10.20506/rst.31.1.2104
  17. Takahashi, Y. and Igarashi, M. 2018. Destination of aminoglycoside antibiotics in the 'post-antibiotic era. J. Antibiot. 71: 4-14. https://doi.org/10.1038/ja.2017.117
  18. Vu, N. T., Roh, E., Thi, T. N. and Oh, C. S. 2022. Antibiotic resistance of Pectobacterium Korean strains susceptible to the bacteriophage phiPccP-1. Res. Plant Dis. 28: 166-171. https://doi.org/10.5423/RPD.2022.28.3.166
  19. Yoo, N.-Y., Kim, K.-Y., Kim, Y.-S., Kim, S.-T., Song, S.-H., Lim, J.-H. et al. 2022. Analysis of pesticide residues in stalk and stem vegetables marketed in northern Gyeonggi-do. J. Food Hyg. Saf. 37: 149-158. https://doi.org/10.13103/JFHS.2022.37.3.149
  20. Zhou, C. and Wang, Y. 2020. Structure-activity relationship of cationic surfactants as antimicrobial agents. Curr. Opin. Colloid Interface Sci. 45: 28-43. https://doi.org/10.1016/j.cocis.2019.11.009