Acknowledgement
본 기고는 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 작성되었음(2021R1A6A3A01088484).
References
- Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall Jr, R. O., Mulholland, P. J., ... & Thomas, S. M. (2011). Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences, 108(1), 214-219. https://doi.org/10.1073/pnas.1011464108
- Cardenas, M. B., & Wilson, J. L. (2007). Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 43(8).
- Hester, E. T., Cardenas, M. B., Haggerty, R., & Apte, S. V. (2017). The importance and challenge of hyporheic mixing. Water Resources Research, 53(5), 3565-3575. https://doi.org/10.1002/2016WR020005
- Jiang, Q., Jin, G., Tang, H., Xu, J., & Chen, Y. (2021). N2O production and consumption processes in a salinity-impacted hyporheic zone. Journal of Geophysical Research: Biogeosciences, 126(10), e2021JG006512.
- Jung, S. H., & Kim, J. S. (2023). Modeling the Effect of Hyporheic Flow on Solute Residence Time Distributions in Surface Water. Submitted.
- Kim, J. S. (2022). Numerical analysis of the hyporheic flow effect on solute transport in surface water. Journal of Korea Water Resources Association, 55(1), 23-32. https://doi.org/10.3741/JKWRA.2022.55.1.23
- Packman, A. I., Salehin, M., & Zaramella, M. (2004). Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. Journal of Hydraulic Engineering, 130(7), 647-656. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(647)
- Ren, J., & Zhao, B. (2020). Model-based analysis of the effects of rippled bed morphologies on hyporheic exchange. Journal of Hydrologic Engineering, 25(6), 04020023.