전어(Konosirus punctatus) 자치어 발육단계에 따른 골격발달과정

 $d\Lambda \hat{e} \cdot \hat{I} \hat{e} d \cdot \hat{O} \quad \hat{O} \cdot \hat{A} \hat{e} \hat{e} \cdot \hat{A} \hat{O} \hat{e}^1 \cdot \hat{O} \hat{O} \hat{e}^2 \cdot \hat{D} \hat{O} \hat{D} \hat{e}^*$

전남대학교 수산과학과, 1전남대학교 수산과학연구소, 2전남대학교 수산해양산업관광레저융합학과

Osteological Development of the Larvae and Juvenile in *Konosirus punctatus by Ji-Hoon Seo, Kwan-Seok Kim, Jin Lee, Won-Jun Choi, Sang-Hun Cha, Tae-Sik Yu¹, Sung-Hun Lee² and Kyeong-Ho Han** (Department of Fisheries Sciences, Chonnam National University, Yeosu 59626, Republic of Korea; ¹Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea; ²Department of Fishery, Marine, Industry, Tourism, and Leisure, Chonnam National University, Yeosu 59626, Republic of Korea)

ABSTRACT Five days after hatching in Konosirus punctatus, the larvae were 5.86~6.21 mm (mean 5.96 mm) in TL and ossified parasphenoid, prefrontal, premaxillary, dentary. Sixteen days after hatching, the larvae were 9.66~10.18 mm (mean 9.96 mm) in TL and ossified prootic, opisthotic, ectopterygoid, and epihyal. Twenty-five days after hatching, the larvae were 11.02~12.64 mm (mean 11.03 mm) in TL and ossified supraclavicle, posttemporal, four actinost. Twenty-eight days after hatching, the larvae were 11.98~12.81 mm (mean 12.34 mm) in TL and ossified frontal, pterotic, epiotic, exoccipital, basioccipital, preorbital, maxillary, hyomadibular, preopercle, opercle, hypohyal. Thirty-six days after hatching, the larvae were 15.26~16.39 mm (mean 16.11 mm) in TL and ossified scapula. 37 days after hatching, the larvae were 15.33~16.87 mm (mean 16.25 mm) in TL and ossified ethmoid, nasal, parietal, supraoccipital, and suborbital. Forty-five days after hatching, the larvae were 20.01~21.83 mm (mean 21.14 mm) in TL, and the shoulder girdle was completed by coracoid formation. Forty-eight days after hatching, the larvae were 22.46~24.03 mm (mean 23.20 mm) in TL and ossified articular and subopercle. When the juvenile reached 27.11~34.09 mm (mean 30.11 mm) in TL (53 days after hatching) completed ossification of the cranium, vertebrae, pelvic girdle, shoulder girdle, caudal bone, and pterygiophore.

Key words: Konosirus punctatus, Clupeiformes, Clupeidae, osteological development

서 론

어류의 초기 골격 형성과 발달 정도는 발생 단계에 있어 중 요한 요인이며, 골격의 정상적인 발달은 사망률, 성장률, 기형 에 영향을 미친다(Sfakianakis *et al.*, 2004). 특히, 어류의 골격 발달은 진화학적, 생리학적, 자원관리에 있어 매우 중요한 역 할을 한다(Mabee, 2000; Debiais-Thibaud *et al.*, 2020). 예를 들어, 종간 골격발달이 비슷하다면, 두 종이 공통의 조상을 가 지고 있음을 의미하기 때문에, 진화체계를 이해하는데 중요한 정보를 제공한다. 또한, 어류의 구조와 기능을 이해하는데 도 움을 주기 때문에 생리학적 이해를 도울 수 있으며, 분류와 분 포, 성장, 생산성 등을 파악하여 효과적인 어류 자원관리 방안 을 모색할 수 있다.

어류의 자치어기 골격 발달과정에 대한 관심과 지식은 사 육 초기에 골격 이상을 확인하고, 제거하는 데 필수적이며, 종의 동정뿐만 아니라 성어의 골격특성에도 중요한 자료 가 될 수 있으므로 구체적이고 체계적인 연구가 필요하다 (Koumoundouros *et al.*, 1997a, b; Park *et al.*, 2014). 또한 유어 기의 계통분류학적 기초형질을 제공하고 있어 이 분야에 대한 연구가 활발하게 진행되고 있다(Potthoff and Tellock, 1993; Liu, 2001; Sfakianakis *et al.*, 2004).

전어(Konosirus punctatus)는 청어목(Clupeiformes), 청어과

저자 직위:서지훈(박사),김관석(박사),이 진(대학원생),최원준(대학원생), 차상훈(대학원생),유태식(박사),이성훈(교수), 한경호(교수)

^{*}Corresponding author: Kyeong Ho Han Tel: 82-61-659-7163,

Fax: 82-61-659-7169, E-mail: aqua05@jnu.ac.kr

(Clupeidae) 어류로 주로 회나 구이로 인기가 좋아 국내 소비 량은 증가되고 있는 추세의 수산 자원상 매우 중요한 어종이 다(MOF, 2021). 주로 열대 및 온대 지역의 연안에 분포하며, 우리나라 전 연안, 일본 중부 이남, 남중국해에 분포하는 연근 해성 어류로 강 하류에도 출현한다(Kim *et al.*, 2001). 전어에 대한 연구는 전어 후기자어의 먹이생물(Park *et al.*, 1996), 전 어 난발생 및 자치어 형태발달(Kim *et al.*, 2007), 전어의 유전 적 다양성 및 개체군 구조(Myoung and Kim, 2014), 전어 자치 어의 식성(Choi *et al.*, 2015) 등 연구가 이루어지고 있지만, 전 어 자치어의 형태 발달에 따른 골격 발달과정에 관한 분류학 적 연구는 이루어지지 않았다.

따라서 본 연구는 수산 자원 및 경제적으로써 가치가 높은 전어의 자치어 발육단계 중에 나타나는 골격발달 과정을 관찰 하여 유사종과의 차이점을 밝히기 위한 기초자료로 제공하고, 같은 청어과 어류의 종 동정을 위한 분류학적 연구 자료로 제 공하고자 한다.

재료 및 방법

1. 실험어 확보 및 인공 수정

이 연구에 사용한 전어 성어는 2004년 6월에 만경강 하구 에서 정치망을 이용하여 채집하였다. 채집한 개체 중 육안으 로 성숙된 암컷 20개체, 수컷 10개체를 이용하여 현장에서 인 공 수정을 하였다. 수정된 어란은 산소 포장 후 실험실로 운반 하여 사육하였다.

실험실로 운반한 어란은 투명유리수조에 수용하였으며, 수 온은 평균 21.5±1.0°C, 염분은 31.5±0.5 psu로 설정하였다. 부화자어는 성장 단계에 따라 *Rotifer* sp., *Artemia* sp., 배합사 료를 순차적으로 공급하였고, 사육수는 매일 1/2씩 환수하였 다.

2. 자치어 골격발달

부화직후부터 치어기까지 성장에 따른 골격 발달 과정을 관 찰하기 위해 매일 5마리를 샘플링하여 5% 중성 포르말린에 고정한 후 Walker and Kimmel (2007)에 따라 염색하였다. 염 색된 자치어는 만능투영기(V-12BS, Nikon, Japan)와 입체해부 현미경(SMZ800, Nikon, Japan)을 이용하여 두개골, 내장골 및 척추골을 관찰하였다. 골격의 명칭은 Kim (1989)에 따랐다.

결 과

전어 자치어의 발육단계에 따른 골격발달은 두개골 (cranium), 견대골(shoulder girdle bone), 요대골(pelvic girdle fin), 내장골(visceral skeleton), 척추골(vertebrae), 미골(caudal skeleton)로 구분하여 관찰하였다.

전어는 부화 후 5일째 자어는 전장이 5.86~6.21 mm (평균 5.96 mm, n=5)로 두개골에 가느다란 선과 같은 부설골(ps: parasphenoid)과 전액골(pf: prefrontal)이 골화하기 시작하였고, 내장골에서 턱을 지지하는 악골은 윗턱에 전상악골(pmx: premaxillary), 아래턱에 치골(dt: dentary)이 가장 먼저 골화하였다(Fig. 1A).

부화 후 6일째 자어는 전장이 5.88~6.43 mm (평균 6.09 mm, n=5)로 처음으로 추체는 척색의 상태에서 척추골의 앞쪽에 서부터 10개의 복추골(abdominal vertebrae)이 골화하였고, 아 가미 바로 뒤에 가는 선모양의 쇄골(cl: clavicle)이 가장 먼저 골화되기 시작하였다(Figs. 2A, 3A).

부화 후 16일째의 자어는 전장이 9.66~10.18 mm (평균 9.96 mm, n=5)로 머리부분에 전이골 (pro: prootic)과 후이골 (opi: opisthotic)이 골화하였고, 내장골에는 주둥이 부분에 외익상골 (ecp: ectopterygoid), 설궁부에는 상설골 (eph: epihyal)이 골화 하였다. 척추골은 앞쪽에서부터 17개의 복추골이 완전히 골화 하였고, 앞쪽에서부터 5개의 측돌기 (pa: parapophysis)가 골화 하였다. 또한 7개의 미추골(caudal vertebrae)이 골화하였으며, 앞쪽에서부터 17개의 신경극(ns: neural spine)이 골화하였다. 견대골의 경우 쇄골 뒤에 후쇄골 (pcl: postclavicle)이 골화하 였다 (Figs. 1B, 2B, 3B).

부화 후 25일째 자어는 전장이 11.02~12.64 mm (평균 11.03 mm, n=5)로 미추골이 26개로 증가하여 척추골이 16~17+25~26=41~42개로 신경극과 혈관극 (hs: hemal spine)이 완성되었으며, 측돌기가 7개로 증가하였다. 또한, 이 시기에 미부봉상골(us: urostyle bone)이 처음으로 골화되었다. 견대골에서는 쇄골 바로 위에 상쇄골(scl: supraclavicle)이 골 화하였고, 그 위에 후측두골(pt: posttemporal)이 처음으로 골 화하기 시작하였으며, 4개의 사출골(ac: actinost)이 골화하였 다(Figs. 2C, 3C).

부화 후 28일째 자어는 전장이 11.98~12.81 mm (평균 12.34 mm, n=5)로 두개골에 액골(f: frontal), 익이골(pte: pterotic), 상이골(epo: epiotic), 외후두골(exo: exoccipital), 기 저후두골(bo: basioccipital)이 골화하였고, 내장골에는 안전골(pob: preorbital)이 골화하였으며, 악골에서는 주상악골(mx: maxillary)과 설악골(hym: hyomadibular)이 골화하였다. 새개 부에서는 전새개골(po: preopercle)과 주새개골(op: opercle)이 골화하였고, 설궁부에는 하설골(hh: hypohyal)과 새조골(br: branchiostegal ray)이 골화하였다(Fig. 1C).

부화 후 36일째 자어는 전장이 15.26~16.39 mm (평균 16.11 mm, n=5)로 등지느러미를 지지하는 신경간극(ins: interneural spine)이 7개가 나타났고, 뒷지느러미를 지지하는 12개의 혈관간극(ihs: interhemal spine)이 나타났으며, 10개의 늑골

Fig. 1. Ossification of the cranium and visceral skeleton in *Konosirus punctatus*. A: 5 days after hatching (DAH), mean 5.96 mm, B: 16 DAH, mean 9.96 mm, C: 28 DAH, mean 12.34 mm, D: 37 DAH, mean 16.25 mm, E: 48 DAH, mean 23.20 mm, F: 53 DAH, mean 30.11 mm in total length. Scale bars indicate 0.50 mm. an: angular; ar: articular; bo: basioccipital; br: branchiostegal ray; dt: dentary; ecp: ectopterygoid; ed: endopterygoid; em: ethmoid; eph: epihyal; epo: epiotic; exo: exoccipital; f: frontal; gh: glossohyal; hh: hypohyal; hym: hyomadibular; mx: maxillary; na: nasal; op: opercle; opi: opisthotic; par: parietal; pal: palatine; pf: prefrontal; pmx: premaxillary; po: preopercle; pob: preorbital; pro: prootic; ps: parasphenoid; pte: pterotic; q: quadrate; sob: suborbital; soc: supraoccipital; sup: subopercle; sy: symplectic; v: vomer.

Fig. 2. Development of the sholuder gridle in *Konosirus punctatus*. A: 6 days after hatching (DAH), mean 6.09 mm, B: 16 DAH, mean 9.96 mm, C: 25 DAH, mean 11.03 mm, D: 36 DAH, mean 16.11 mm, E: 45 DAH, mean 21.14 mm in total length. Scale bars indicate 0.50 mm. ac: actinost; cl: clavicle; co: coracoid; pcl: postclavicle; pf: pectroal fin; pt: posttemporal; sca: scapula; scl: supraclavicle.

(rib)이 골화하였다. 견대부의 쇄골은 더욱 넓어져 있으며, 그 뒤쪽 아랫부분에 견갑골(sca: scapula)이 골화하였다(Figs. 2D, 3D).

부화 후 37일째 자어는 전장이 15.33~16.87 mm (평균 16.25 mm, n=5)로 두개골에 사골(em: ethmoid), 비골(na: nasal), 노정골(par: parietal), 상후두골(soc: supraoccipital) 이 골화하였고, 내장골에는 부설골 아래쪽으로 안하골(sob: suborbital)이 골화하였으며, 새조골은 4개로 증가하였다(Fig. 1D).

부화 후 45일째 자어는 전장이 20.01~21.83 mm (평균 21.14 mm, n=5)로 등지느러미 앞쪽으로 유리신경간극(fins: free interneural spine)이 8개가 나타났고, 신경간극이 16개로

Fig. 3. Ossification of the vertebrae skeleton, caudal bone and pelvic girdle in *Konosirus punctatus*. A: 6 days after hatching (DAH), mean 6.09 mm, B: 16 DAH, mean 9.96 mm, C: 25 DAH, mean 11.03 mm, D: 36 DAH, mean 16.11 mm, E: 45 DAH, mean 21.14 mm, F: 53 DAH, mean 30.11 mm in total length. Scale bars indicate 0.50 mm. af: anal fin; c: centrum; cf: caudal fin; df: dorsal fin; ep: epural bone; epi: epicentral; fins: free interhemal spine; hs: hemal spine; hy: hypural bone; ihs: interhemal spine; ins: interneural spine; nc: notochord; ns: neural spine; parapophysis; pg: pelvic girdle; ph: parhypural; r: rib; ur: urostyle bone; vf: ventral fin.

Table	1. The	ossification	process of	of	cranium	in	Konosirus	punctatus
-------	--------	--------------	------------	----	---------	----	-----------	-----------

	Days of hatching								
Cranium	5	16	28	37	48	53			
Parasphenoid									
Basioccipital									
Supraoccipital									
Epiotic									
Parietal									
Prootic									
Opisthotic									
Alisphenoid									
Sphenotic									
Pterotic									
Vomer									
Ethmoid									
Frontal									
Prefrontal									
Nasal									
Exoccipital									

증가하였으며, 혈관간극도 16개로 증가하였다. 배지느러미에 는 요대골(pg: pelvic girdle)이 골화하였고, 미골부에는 하미축 골(hy: hypural bone)과 준하미축골(ph: parhypural)이 골화하 였다. 견대부는 오훼골(co: coracoid)이 골화하여 견대골의 골 화가 완성되었다(Figs. 2E, 3E). 부화 후 48일째 자어는 전장이 22.46~24.03 mm (평균 23.20 mm, n=5)로 내장골의 구개부에서 관절골(ar: articular) 이 골화하였고, 새개부에는 하새개골(sup: subopercle)이 골화 하였으며, 새조골은 6개로 증가하였다(Fig. 1E).

부화 후 53일째 치어는 전장이 27.11~34.09 mm (평균

		Days of hatching								
Visceral ske	leton	5	16	28	37	48	53			
I lan an ions	Maxillary									
Opper Jaw	Premaxillary									
	Dentary									
Lower jaw	Articular									
5	Angular									
	Ceratohyal									
	Epihyal									
	Symplectic									
	Urohyal									
Hyoid arch	Interhyal									
	Branchiostegal ray									
	Glossohyal									
	Hypohyal									
	Palatine									
	Metapterygoid									
	Ectopterygoid									
Palate	Endopterygoid									
	Angular Angular Ceratohyal Epihyal Symplectic Urohyal Interhyal Branchiostegal ray Glossohyal Hypohyal Hypohyal Ectopterygoid Endopterygoid Hyomandibular Quadrate Opercle Interopercle Subopercle Preopercle									
	0 1									
	Opercle									
Opercular	Interopercle									
Opercular	Subopercle									
	Preopercle									
	Preorbital									
Orbital region	Suborbital									

 Table 2. The ossification process of Visceral skeleton in Konosirus punctatus

30.11 mm, n = 5)로 두개골에서 서골 (v: vomer)이 골화하였 고, 내장골의 구개부에는 구개골 (pal: palatine), 내익상골 (ed: endopterygoid), 각골 (an: angular), 방골 (q: quadrate), 접속 골 (sy: symplectic)이 골화하였으며, 설궁부에는 인설골 (gh: glossohyal)이 골화하여 완전한 형태를 갖추어 성어의 골격과 거의 닮아 있었다. 척추골에서는 복추골 쪽에 상추체골 (epi: epicentral)이 30개가 골화되어 있으며, 미부봉상골 위쪽에 상 미축골 (ep: epural bone)이 골화되어 미골이 완성되었고, 척추 골은 17+27=44개(미부봉상골 포함)였다(Figs. 1F, 3F).

고 찰

어류의 골격은 일반적으로 두개골과 지느러미부터 분화되 는데, 부화 전에 골격이 발달하는 어류와 부화 후에 골격이 발 달하는 어류로 나누어진다(Park *et al.*, 2015). 이 연구에서 전 어는 부화 후 5일째인 전기자어(평균 5.90 mm)에 골격 발달 이 시작되었으며, 부화 후 53일째 치어기(평균 30.11 mm)에 달하여 대부분의 골격이 완전한 형태를 갖추었다.

전어 자치어의 골격 발달은 부설골, 전액골, 전상악골, 치 골이 가장 먼저 형성되었으며, 견대부에서 아가미 바로 뒤 에 가는 선 모양의 쇄골이 발달하는 것이 관찰되었다. 이는 Matsuoka (1997)의 연구 결과인 *Sardinops melanostictus*와 Han *et al.* (2000)의 연구 결과인 준치 (*Ilisha elongata*)의 골 화 순서와 비슷한 경향을 보였다. 다른 골격에 비해 두개골 과 악골이 먼저 발달하는 것은 먹이 섭이와 호흡, 생존과 관 련이 있는 것으로 알려졌으며(Vandewalle *et al.*, 1997), 동시 에 입이 열리며, 섭이기능이 가능하게 한다 (Wagemans and Vandewalle, 1999).

가슴지느러미를 지지하는 견대골은 어류의 유영능력에 영

			Days of hatching							
Skeleton		6	16	25	36	45	53			
Vertebrae	Neural spine Parapophysis Hemal spine Abdominal vertebrae Caudal vertebrae Rib									
Caudal skeleton	Epural bone Urostyle bone Hypural bone Parhypural									
Shoulder girdle bone	Actinost Clavicle Coracoid Supraclavicle Scapula Pelvic girdle									

Table 3. The ossification process of vertebrae, caudal skeleton and shoulder girdle bone in Konosirus punctatus

향이 있다(Mun et al., 2019). 본 연구에서 전어는 부화 후 6일 째에 쇄골이 골화하기 시작하여, 후쇄골, 상쇄골, 후측두골, 사 출골, 견갑골, 오훼골 순으로 골화하였다. 같은 청어과 어류에 속하는 S. melanostictus (Matsuoka, 1997)와 준치(Han et al., 2000)의 견대부 골화는 쇄골이 형성된 이후 상쇄골, 후쇄골 순 으로 형성되었으나, 사출골, 견갑골, 오훼골의 발달 순서는 종 간 차이가 나타났다. 유사 분류군 내 골격의 발달 과정 차이를 비교하기 위해서는 속(genus) 수준에서 비교를 해야 하며, 다 양한 어류에 대한 기초 연구가 필요할 것으로 생각된다.

전어의 새개부 골격 발달은 전새개골과 주새개골이 동시에 골화하고 이후 하새개골, 간새개골 순으로 발달하였는데, *S. melanostictus* (Matsuoka, 1997)와 준치 (Han *et al.*, 2000)에서 는 주새개골이 먼저 형성되고, 전새개골, 간새개골, 하새개골 이 골화한다는 점에서 차이가 나타났다.

지느러미를 지지하는 담기골의 골화는 지느러미가 발달되 면서 이루어졌는데, 전어의 경우 추체의 골격이 완성된 이후 담기골의 골화가 완료되었다. 이는 *S. melanostictus* (Matsuoka, 1997)와 준치(Han *et al.*, 2000)에서 같은 경향을 보였으며, 척 추골의 골화와 지느러미 줄기 발달이 완성된 후에 담기골의 골화가 완료되는 것은 어류가 유영하는데 있어 추진력을 증가 시키는 것과 관련이 있는 것으로 보여진다(Lee *et al.*, 2001).

척추골은 몸의 중축을 이루는 중요한 골격 부위로서 (Han et al., 2017) 전어의 경우 부화 후 6일째 평균전장 6.09 mm에서 척추골 앞쪽에서부터 10개의 복추골이 골화하기 시작하여 부

화 후 16일째 평균전장 9.96 mm에서 17개의 복추골이 완전히 골화하고 17개의 신경극이 골화하였다. 부화 후 25일째 평균 전장 11.03 mm에서 척추골이 16~17+25~26=41~42개로 신 경극과 혈관극이 동시에 골화가 완성되었고, 이 시기에 미부 봉상골이 골화하기 시작하였으며, 평균전장 30.11 mm일 때 발 달이 완료되어 척추골 수는 미부봉상골을 포함하여 44개였다. S. melanostictus (Matsuoka, 1997)에서는 체장 18 mm일 때 약 20개의 추체가 척추골의 중앙에서 골화하였고, 11개의 신경극 과 7개의 혈관극이 형성되었으며, 성장하면서 척추골의 중앙 에서 앞, 뒤쪽으로 골화가 진행되었다. 체장 19.5 mm일 때 신 경극 24개, 혈관극 23개로 골화하였고, 미부봉상골이 골화하 기 시작하였으며, 체장 28.4 mm일 때 발달이 완료되어 척추 골 수는 미부봉상골을 포함하여 50~52개로 나타났다. 준치 (Han et al., 2000)는 평균전장 11.72 mm에서 복추골 앞쪽에서 부터 14개의 추체와 신경극이 골화하기 시작하였고, 평균전장 14.62 mm에서 혈관극이 골화하기 시작하였으며, 이 시기에 미 부봉상골이 골화하는 것이 관찰되었으나 척추골의 개수에 대 한 언급은 없었다. 이와 같이 분류군마다 척추골 수의 차이가 관찰되어 분류학적 형질로서 유용하게 활용될 것이라고 생각 되고, 각 분류군 척추골의 발달정도가 다르게 나타나는 것이 확인되었으며, 향후 청어과 어류의 척추골 발달에 대한 추가 적인 연구가 필요할 것으로 생각된다.

Mook (1977)은 어류의 골격형성 및 추체의 골화가 그들의 습성과 생활방식에 의해 통제되며, 이러한 생활 방식의 차이 는 골화되는 정도와 순서에 변화를 초래하여 자치어의 골격 발달에 다양한 변화를 줄 수 있다고 지적하였는데, 자치어의 골격발달에 대한 연구는 종 동정뿐만 아니라 성어의 골격이 해, 계통분류학적 연구의 매우 중요한 기초자료로 제공함으로 써 전어 뿐만 아니라 향후 청어과 어류의 자치어에 대한 골격 학적 특성에 대한 연구가 지속적으로 필요하다.

요 약

전어는 부화 후 5일째 평균전장 5.96 mm로 부설골, 전액골, 전상악골, 치골이 먼저 골화하였다. 부화 후 16일째 평균전장 9.96 mm로 전이골, 후이골, 외익상골, 상설골이 골화하였다. 부 화 후 25일째 평균전장 11.03 mm로 상쇄골, 후측두골이 골화 하기 시작하였으며, 4개의 사출골이 골화하였다. 부화 후 28일 째 평균전장 12.34 mm로 액골, 익이골, 상이골, 외후두골, 기 저후두골, 안전골, 주상악골, 설악골, 전새개골, 주새개골, 하설 골이 골화하였다. 부화 후 36일째 평균전장 16.11 mm로 견갑 골이 골화하였고, 부화 후 37일째 평균전장 16.25 mm로 사골, 비골, 노정골, 상후두골, 안하골이 골화하였다. 부화 후 45일째 평균전장 21.14 mm로 오혜골이 골화하였다. 부화 후 45일째 평균전장 21.14 mm로 오혜골이 골화하여 견대부의 골화가 완 성되었다. 부화 후 48일째 평균전장 23.20 mm로 관절골, 하새 개골이 골화하였다. 부화 후 53일째 평균전장 30.11 mm로 서 골, 구개골, 내익상골, 각골, 방골, 접속골, 인설골이 골화하면서 모든 골격의 골화가 완료되었다.

REFERENCES

- Choi, H.C., I.S. Han, Y.S. Suh and S.H. Huh. 2015. Feeding habits of larval *Konosirus punctatus* from the Nakdong River estuary, Korea. Korean J. Fish. Aquat. Sci., 48: 752-759. https://doi. org/10.5657/KFAS.2015.0752.
- Debiais-Thibaud, M., C.J. Metcalfe, J. Pollack, I. Germon and A.W. Thompson. 2020. The evolution of vertebrate skeletal development: perspectives from developmental biology and fossil record. J. Exp. Zool. B Mol. Dev. Evol., 334: 13-26.
- Han, K.H., D.Y. Kim, B.Y. Noh, S.H. Oh, Y.M. Kim, D.S. Jin and Y.U. Kim. 2000. Morphological and skeletal development of larvae and juveniles of the slender, *Ilisha elongata* (Bennett) (Teleostei: Clupeidae). Korean J. Ichthyol., 12: 230-235.
- Han, K.H., T.J. Park, D.S. Jin, D.J. Yoo and J.M. Park. 2017. Osteological development of the larvae and juvenile in *Coreoperca herzi*. Korean J. Ichthyol., 29: 32-40.
- Kim, K.S., K.H. Han, J.H. Lee, S.H. Lee, C.C. Kim, H.J. Ko and K.S. Jeong. 2007. Egg development and morphology of larva and juvenile of the Konoshiro Gizzard Shad, *Konosirus*

punctatus. Dev. Reprod., 11: 127-135.

- Kim, Y.U. 1989. Introduction of ichthyolgoy. Taehwa Publishing, Busan, 270pp.
- Kim, Y.U., J.G. Myoung, Y.S. Kim, K.H. Han, C.B. Kang and J.G. Kim. 2001. The marines fishes of Korea. Hanguel, Busan, Korea, 382pp.
- Koumoundouros, G., D.G. Sfakianakis, E. Maingot, P. Divanach and M. Kentouri. 2001. Osteological development of the vertebral column and of the fins in *Diplodus sargus* (Teleostei: Perciformes: Sparidae). Mar. Biol., 139: 853-862. https://doi. org/10.1007/s002270100645
- Koumoundouros, G., F. Gagliardi, P. Divanach, C. Boglione, S. Cataudella and M. Kentouri. 1997a. Normal and abnormal osteological development of caudal fin in *Sparus aurata* L. fry. Aquaculture, 149: 215-226. https://doi.org/10.1016/ S0044-8486(96)01443-3
- Koumoundouros, G., G. Oran, P. Divanach, S. Stefanakis and M. Kentouri. 1997b. The opercular complex deformity in intensive gilthead sea bream (*Spartus aurata* L.) larviculture. Moment of apparition and description. Aquaculture, 156: 165-177. https://doi.org/10.1016/S0044-8486(97)89294-0
- Liu, C.H. 2001. Early osteological development of the yellow tail Seriola dumerili (Pisces: Carangidae). Zool. Stud., 40: 289-298.
- Mabee, P.M. 2000. Developmental plasticity: bones and beyond. J. Exp. Zool., 288(1): 1-20.
- Matsuoka, M. 1997. Osteological development in the Japanese sardine, *Sardinops melanostictus*. Ichthyol. Res., 44(3): 275-295. https://doi.org/10.1007/BF02678707.
- Mook, D. 1977. Larval and osteological development of the sheepshead, Archosargus probatocephalus (Pisces: Sparidae). Copeia, 1: 126133. https://doi.org/10.2307/1443514.
- Mun, S.J., J.M. Park and K.H. Han. 2019. Osteological development of larvae and juvenile of *Hemibarbus longirostris* (Cypriniformes: Cyprinidae) from Korea. Korean J. Ichthyol., 31: 214-221. https://doi.org/10.35399/ISK.31.4.5.
- Myoung, S.H. and J.K. Kim. 2014. Genetic diversity and population structure of the gizzard shad, *Konosirus punctatus* (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences. Genes Genom., 36: 591-598. https:// doi.org/10.1007/s13258-014-0197-6.
- Park, J.M., J.K. Cho, K.H. Han, N.R. Kim, H.K. Hwang, K.M. Kim, J.I. Myeong and M.H. Son. 2014. Early life history of the sevenband grouper, *Epinephelus septemfasciatus* from Korea. Dev. Reprod., 18: 13-23. https://doi.org/10.12717/ DR.2014.18.1.013.
- Park, J.Y., C.G. Hong, J.K. Cho, M.H. Son, K.H. Han and J.M. Park. 2015. Early osteological development of the Larvae and Juveniles in Sevenband Grouper, *Epinephelus septemfasciatus* (Pisces: Serranidae). Korean J. Ichthyol., 27: 189-198.
- Park, K.J., S.S. Cha and S.H. Huh. 1996. Food organism of postlarval Shad (Konosirus punctatus) in Kwangyang Bay. J.

Korean Fish. Soc., 29: 450-455.

- Potthoff, T. and J.A. Tellock. 1993. Osteological development of the snook, *Centropomus undecimalis* (Teleostei, Centropomidae). Bull. Mar. Sci., 52: 669716.
- Sfakianakis, D.G., G. Koumoundouros, P. Divanach and M. Kentouri. 2004. Osteological development of the vertebral column and of the fins in *Pagellus erythrinus* (L. 1758). Temperature effect on the developmental plasticity and morphoanatomical abnormalities. Aquaculture, 232: 407424. https://doi.org/10. 1016/j.aquaculture.2003.08.014.

Vandewalle, P., I. Gluckmann, E. Baras, F. Huriaux and B. Focant.

1997. Postembryonic development of the cephalic region in *Heterobranchus longifilis*. J. Fish Biol., 50: 227-253. https://doi.org/10.1111/j.1095-8649.1997.tb01355.x.

- Wagemans, F. and P. Vandewalle. 1999. Development of the cartilaginous skull in *Solea solea*: trends on Pleuronectiforms. Ann. Sci. Nat., Zool. Biol. Anim., 20: 39-52. https://doi. org/10.1016/S0003-4339(99)80007-0.
- Walker, M.B. and C.B. Kimmel. 2007. A two color acid free cartilage and bone stain for zebrafish larvae. Biotech. Histochem., 82: 23-28. https://doi.org/10.1080/10520290701333558.