DOI QR코드

DOI QR Code

기계적 밀링 처리하여 SPS법으로 제작한 티타늄의 미세조직과 강화기구 특성

Microstructure and Strengthening Mechanism Characteristics of Titanium Fabricated by SPS Method after Mechanical Milling Treatment

  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 김준성 (호서대학교 자동차ICT공학과) ;
  • 심우빈 (호서대학교 자동차ICT공학과)
  • Chang-Suk Han (Department of ICT Automotive Engineering, Hoseo University) ;
  • June-Sung Kim (Department of ICT Automotive Engineering, Hoseo University) ;
  • Woo-Bin Sim (Department of ICT Automotive Engineering, Hoseo University)
  • 투고 : 2023.05.18
  • 심사 : 2023.06.18
  • 발행 : 2023.06.27

초록

Titanium, which has excellent strength and toughness characteristics, is increasingly used in the aerospace field. Among the titanium alloys used for body parts, more than 80 % are Ti-6Al-4V alloys with a tensile strength of 931 MPa. The spark plasma sintering (SPS) method is used for solidification molding of powder manufactured by the mechanical milling (MM) method, by sintering at low temperature for a short time. This sintering method avoids coarsening of the fine crystal grains or dispersed particles of the MM powder. To improve the mechanical properties of pure titanium without adding alloying elements, stearic acid was added to pure titanium powder as a process control agent (PCA), and MM treatment was performed. The properties of the MM powder and SPS material produced by solidifying the powder were investigated by hardness measurement, X-ray diffraction, density measurement and structure observation. The processing deformation of the pure titanium powder depends on the amount of stearic acid added and the MM treatment time. TiN was also generated in powder treated by MM 8 h with 0.50 g of added stearic acid, and the hardness of the powder was higher than that of Ti-6Al-4V alloy when treated with MM for 8 h. When the MM-treated powder was solidified in the SPS equipment, TiC was formed by the solid phase reaction. The SPS material prepared as a powder treated with MM 8 h by adding 0.50 g of stearic acid also formed TiN and exhibited the highest hardness of Hv1253.

키워드

과제정보

This research was supported by the Hoseo University research grant in 2022.

참고문헌

  1. K. Chatterjee, M. P. Echlin, M. Kasemer, P. G. Callahan, T. M. Pollock and P. Dawson, Acta Mater., 157, 21 (2018).
  2. M. Kimura, T. Iijima, M. Kusaka, K. Kaizu and A. Fuji, J. Manuf. Processes, 24, 203 (2016).
  3. S. Ye, W. Mo, Y. Lv, Z. Wang, C. T. Kwok and P. Yu, Appl. Sci., 9, 1339 (2019).
  4. N. A. Abu Kasim, N. H. M. Nor, M. H. Ismail and J. Saedon, Mater. Sci. Forum, 889, 79 (2017).
  5. P. Sartkulvanich, D. Li, E. Crist and K. O. Yu, Mater. Sci. Forum, 838/839, 171 (2016).
  6. X. M. Li and Y. Han, Appl. Surf. Sci., 254, 6350 (2008).
  7. W. Wang, H. Zhou, Q. Wang, B. Wei, S. Xin and Y. Gao, Metals, 10, 737 (2020). https://doi.org/10.3390/met10060737
  8. A. Ota, H. Egawa and H. Izui, Mater. Sci. Forum, 706/709, 222 (2012).
  9. E. Nakata, J. Jpn. Inst. Light Met., 33, 111 (1983).
  10. T. Miyazaki, Y. Fujimoto and T. Sasaki, J. Appl. Crystallogr., 49, 241 (2016).
  11. T. Miyazaki and T. Sasaki, Int. J. Mater. Res., 106, 237 (2015).
  12. W. Chen and C. J. Boehlert, Key Eng. Mater., 436, 195 (2010).
  13. H. T. Wang, M. Lefler, Z. Z. Fang, T. Lei, S. M. Fang, J. M. Zhang and Q. Zhao, Key Eng. Mater., 436, 157 (2010).
  14. N. N. Cherenda, A. V. Basalai, V. I. Shymanski, V. V. Uglov, V. M. Astashynski, A. M. Kuzmitski, A. P. Laskovnev and G. E. Remnev, Surf. Coat. Technol., 355, 148 (2018).
  15. L. Xie, C. Jiang, W. Lu, Q. Feng and X. Wu, Surf. Coat. Technol., 206, 511 (2011).
  16. L. L. Ye and M. X. Quan, Nanostruct. Mater., 5, 25 (1995).
  17. M. Sherif El-Eskandarany, T. J. Konno, K. Sumiyama and K. Suzuki, Mater. Sci. Eng., A, 217/218, 265 (1996).
  18. M. Kobashi, S. Tanahashi and N. Kanetake, J. Jpn. Inst. Light Met., 53, 427 (2003).
  19. R. Venkatesh, K. K. Chawla and M. Ferber, Scr. Metall. Mater., 26, 859 (1992).
  20. Y. F. Zhang, L. Lu and S. M. Yap, J. Mater. Process. Technol., 89/90, 260 (1999).
  21. G. K. Williamson and W. H. Hall, Acta Metall., 1, 22 (1953).
  22. J. Eckert, J. C. Holzer, C. E. Krill and W. L. Johnson, J. Mater. Res., 7, 1751 (1992).
  23. K. Y. Wang, T. D. Quan and W. D. Wei, J. Mater. Sci. Lett., 12, 1818 (1993).
  24. J. Koike, Metall. Mater. Trans. A, 36A, 1689 (2005).
  25. Z. Huang, H. Qu, H. Ye, C. Deng, H. Wu, H. Ma and J. Yang, Inter. J. Mater. Res., 103, 790 (2012). https://doi.org/10.3139/146.110784
  26. M. Kubota and B. P. Wynne, Scr. Mater., 57, 719 (2007).
  27. T. Fujii, S. Sodeoka and K. Ameyama, J. Jpn. Inst. Light Met., 47, 329 (1997).