DOI QR코드

DOI QR Code

Unusual Electrical Transport Characteristic of the SrSnO3/Nb-Doped SrTiO3 Heterostructure

  • De-Peng Wang (School of Physics and Electronic Information, Yantai University) ;
  • Rui-Feng Niu (School of Physics and Electronic Information, Yantai University) ;
  • Li-Qi Cui (School of Physics and Electronic Information, Yantai University) ;
  • Wei-Tian Wang (School of Physics and Electronic Information, Yantai University)
  • 투고 : 2023.03.16
  • 심사 : 2023.05.24
  • 발행 : 2023.06.27

초록

An all-perovskite oxide heterostructure composed of SrSnO3/Nb-doped SrTiO3 was fabricated using the pulsed laser deposition method. In-plane and out-of-plane structural characterization of the fabricated films were analyzed by x-ray diffraction with θ-2θ scans and φ scans. X-ray photoelectron spectroscopy measurement was performed to check the film's composition. The electrical transport characteristic of the heterostructure was determined by applying a pulsed dc bias across the interface. Unusual transport properties of the interface between the SrSnO3 and Nb-doped SrTiO3 were investigated at temperatures from 100 to 300 K. A diodelike rectifying behavior was observed in the temperature-dependent current-voltage (IV) measurements. The forward current showed the typical IV characteristics of p-n junctions or Schottky diodes, and were perfectly fitted using the thermionic emission model. Two regions with different transport mechanism were detected, and the boundary curve was expressed by ln I = -1.28V - 13. Under reverse bias, however, the temperature- dependent IV curves revealed an unusual increase in the reverse-bias current with decreasing temperature, indicating tunneling effects at the interface. The Poole-Frenkel emission was used to explain this electrical transport mechanism under the reverse voltages.

키워드

참고문헌

  1. Z. Lebens-Higgins, D. O. Scanlon, H. Paik, S. Sallis, Y. Nie, M. Uchida, N. F. Quackenbush, M. J. Wahila, G. E. Sterbinsky, D. A. Arena, J. C. Woicik, D. G. Schlom and L. F. J. Piper, Phys. Rev. Lett., 116, 027602 (2016). 
  2. S. Yu, D. Yoon and J. Son, Appl. Phys. Lett., 108, 262101 (2016). 
  3. C. A. Niedermeier, S. Rhode, S. Fearn, K. Ide, M. A. Moram, H. Hiramatsu, H. Hosono and T. Kamiya, Appl. Phys. Lett., 108, 172101 (2016). 
  4. W. Y. Wang, Y. L. Tang, Y. L. Zhu, J. Suriyaprakash, Y. B. Xu, Y. Liu, B. Gao, S. W. Cheong and X. L. Ma, Sci. Rep., 5, 16097 (2015). 
  5. S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain and S. Stemmer, APL Mater., 4, 016106 (2016). 
  6. A. Vegas, M. Vallet-Regi, J. M. Gonzalez-Calbet and M. A. Alario-Franco, Acta Crystallogr., 42, 167 (1986). 
  7. M. A. Green, K. Prassides, P. Day and D. A. Neumann, Int. J. Inorg. Mater., 2, 35 (2000). 
  8. Q. Liu, F. Jin, G. Gao and W. Wang, J. Alloys Compd., 717, 62 (2017). 
  9. K. Li, Q. Gao, L. Zhao and Q. Liu, Nanoscale Res. Lett., 15, 164 (2020). 
  10. Q. Gao, K. Li, L. Zhao, K. Zhang, H. Li, J. Zhang and Q. Liu, ACS Appl. Mater. Interfaces, 11, 25605 (2019). 
  11. T. Wang, L. R. Thoutam, A. Prakash, W. Nunn, G. Haugstad and B. Jalan, Phys. Rev. Mater., 1, 061601(R) (2017). 
  12. P. Han, K. Jin, H. B. Lu, Q. L. Zhou, Y. L. Zhou and G. Z. Yang, Appl. Phys. Lett., 91, 182102 (2007). 
  13. L. Xue, P. Zhou, C. X. Zhang, C. Y. He, G. L. Hao, L. Z. Sun and J. X. Zhong, AIP Adv., 3, 052105 (2013). 
  14. S. B. Zhang, S. H. Wei and A. Zunger, Phys. Rev. B, 63, 075205 (2001). 
  15. W. F. Zhang, J. Tang and J. Ye, Chem. Phys. Lett., 418, 174 (2006). 
  16. H. Jaim, S. Lee, X. Zhang and I. Takeuchi, Appl. Phys. Lett., 111, 172102 (2017). 
  17. G. Tyuliev and S. Angelov, Appl. Surf. Sci., 32, 381 (1988). 
  18. R. Perez-Casero, J. Perriere, A. Gutierrezllorente, D. Defourneau, E. Millon, W. Seiler and L. Soriano, Phys. Rev. B, 75, 165317 (2007). 
  19. J. Stoch and J. Gablankowska-Kukucz, Surf. Interface Anal., 17, 165 (1991). 
  20. W. Wang, L. Zhang, D. Yuan and Y. Sun, Thin Solid Films, 518, 7044 (2010). 
  21. P. Han, H. Lu, K. Jin, J. Jia, J. Qiu, C. Hu and L. Liao, Phys. B, 404, 1332 (2009). 
  22. Y. M. Cui, L. W. Zhang, C. C. Wang, G. L. Xie, C. P. Chen and B. S. Cao, Appl. Phys. Lett., 86, 203501 (2005). 
  23. Y. Cui, L. Zhang, R. Wang and G. Xie, Thin Solid Films, 516, 2292 (2008). 
  24. W. Wang, Y. Sun, D. Yuan, L. Zhang, Y. Zhao and Z. Dai, J. Appl. Phys., 109, 073723 (2011). 
  25. A. Zkria, M. Shaban, T. Hanada, N. Promros, T. Yoshitake and J. Nanosci. Nanotechnol., 16, 12749 (2016). 
  26. H. C. Casey, J. J. Muth, S. Krishnankutty and J. M. Zavada, Appl. Phys. Lett., 68, 2867 (1996). 
  27. I. Jabbari, M. Baira, H. Maaref and R. Mghaieth, Chin. J. Phys., 73, 719 (2021). 
  28. Y. Watanabe, Phys. Rev. B, 57, R5563 (1998). 
  29. K. H. Lee, S. J. Chang, P. C. Chang, Y. C. Wang and C. H. Kuo, Appl. Phys. Lett., 93, 132110 (2008). 
  30. C. H. Hsu and C. H. Chang, Mater. Sci. Eng., B, 178, 354 (2013). 
  31. I. C. Infante, F. Sanchez, V. Laukhin, A. Perez del Pino, J. Fontcuberta, K. Bouzehouane, S. Fusil and A. Barthelemy, Appl. Phys. Lett., 89, 172506 (2006). 
  32. W. Wang, L. Zhang, D. Yuan and Y. Sun, J. Appl. Phys., 107, 094106 (2010).