DOI QR코드

DOI QR Code

팽창기 사이클 엔진에 대한 검토 및 개발 동향

Review and Development Trends for Expander Cycle Engine

  • Dongwoo Choi (School of Mechanical Engineering, Chungbuk National University) ;
  • Kyubok Ahn (School of Mechanical Engineering, Chungbuk National University)
  • 투고 : 2022.10.24
  • 심사 : 2023.04.10
  • 발행 : 2023.04.30

초록

팽창기 사이클 엔진은 구조적 단순함으로 인한 높은 신뢰성과 낮은 제작 비용을 갖는 장점이 있지만, 제한된 추력을 갖는 특징으로 인해 발사체 상단부에 적용되어왔다. 발사체 상단에는 다양한 사이클의 엔진들이 사용되고 있다. 하지만 점차 미국, 유럽, 중국, 일본 등의 국가주도 발사체뿐만 아니라 블루오리진과 같은 사기업 발사체의 상단에도 팽창기 사이클 엔진이 적용되고 있다. 국내에서도 팽창기 사이클 엔진 개발 및 관련 연구가 시작되고 있다. 이에 팽창기 사이클에 대한 이해와 엔진 요구조건 설정에 도움이 되고자 현재 발사체에 적용 중이거나 적용을 목표로 개발 중인 팽창기 사이클 엔진들의 사례를 기술하였다.

The expander cycle engine has advantages of high reliability and low manufacturing cost due to its structural simplicity, but has been applied to the upper stage of launch vehicles due to its limited thrust capability. Engines of various cycles are used in the upper stages of launch vehicles. However, the expander cycle engine is gradually being applied to the upper stage of not only government-led vehicles in the United States, Europe, China, and Japan, but also private vehicles such as Blue Origin. Development of an expander cycle engine and related research are beginning in Korea. To help understand the expander cycle and set engine requirements, examples of expander cycle engines currently being applied to launch vehicles or being developed for application are described.

키워드

과제정보

본 논문은 과학기술정보통신부의 재원으로 한국연구재단(NRF-2021M1A3B8077772, RS-2022-00156358) 및 한국항공우주연구원(KARI-FR21C00)의 지원을 받아서 수행되었으며, 이에 감사드립니다.

참고문헌

  1. "SpaceX Falcon Payload User's Guide," retrieved 20 Oct. 2022 from https://www.spacex.com/.
  2. "HM7B Engine," retrieved 20 Oct. 2022 from https://www.ariane.group/en/.
  3. "Soyuz User's Manual," retrieved 20 Oct. 2022 from https://www.ariane.group/en/.
  4. Demyanenko, Y., Dmitrenko, A., Ivanov, A. and Pershin, V., "Turbopumps for Gas Generator and Staged Combustion Cycle Rocket Engines," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, A.Z., U.S.A., AIAA 2005-3946, Jul. 2005.
  5. "The Annual Compendium of Commercial Space Transportation: 2018," retrieved 20 Oct. 2022 from https://www.faa.gov/.
  6. "LM-3B User's Manual," retrieved 20 Oct. 2022 from http://www.calt.com/.
  7. "Delta IV Launch Services User's Guide," retrieved 20 Oct. 2022 from https://www.ulalaunch.com/.
  8. Ellis, R.A., Payne, F.M., Lacoste, M., Lacombe, A. and Joyez, P., "Development of a Carbon-Carbon Translating Nozzle Extension for the RL10B-2 Liquid Rocket Engine," 33rd Joint Propulsion Conference and Exhibit, Seattle, W.A., U.S.A., AIAA 1997-2672, Jul. 1997.
  9. "Mission Overview, Atlas V STP-3 Mission," retrieved 20 Oct. 2022 from https://www.ulalaunch.com/.
  10. NASA, "Cryogenic Propulsion Stage," M11-0918, 2011.
  11. "H-IIB Launch Vehicle No. 3 (H-IIB F3) Overview," retrieved 20 Oct. 2022 from https://global.jaxa.jp/.
  12. Terakado, D., Higashi, K., Sakaki, K., Komaru, T., Suwa, N., Arimoto, Y. and Ikemoto, A., "2nd Qualification Test Series Results of the Upper Stage Engine LE-5B-3 for H3 Rocket," 8th European Conference for Aeronautics and Space Sciences, Madrid, Spain, EUCASS 2019-626, Jul. 2019.
  13. Zhang, N., "The Development of LOX/LH2 Engine in China," 64th International Astronautical Congress, Beijing, China, IAC-13,C4.1,1x18525, Sep. 2013.
  14. "ILS Angara 1.2 Brochure," retrieved 20 Oct. 2022 from https://www.ilslaunch.com/launch-vehicle/angara-1-2/.
  15. Almeida, D.S., Santos, E.A. and Langel, G., "Upper Stage Liquid Propellant Rocket Engine: A Case Analysis," Journal of Aerospace Technology and Management, Vol. 13, pp. 1-20, 2021. https://doi.org/10.1590/jatm.v13.1203
  16. "Exomars's Launch Vehicle Proton-M," retrieved 20 Oct. 2022 from https://www.kari.re.kr/kor.do.
  17. Gordon, K.E., "Analysis of Chinese Cryogenic Long March Launch Vehicles and YF-100 Liquid Rocket Engine," Doctoral Dissertation, Aeronautical and Astronautical Engineering, The Ohio State University, Columbus, O.H., U.S.A., 2018.
  18. "Vega User's Manual Issue 4," retrieved 20 Oct. 2022 from https://www.arianespace.com/.
  19. "Alpha Payload User Guide," retrieved 20 Oct. 2022 from https://firefly.com/.
  20. "Rocketlab Payload User's Guide," retrieved 20 Oct. 2022 from https://www.rocketlabusa.com/.
  21. Alliot P., Delange, J.F., Edeline, E., Sabin, P., Lekeux, A. and Vielle, B., "The Vinci Upper Stage Engine: Toward the Demonstration of Maturity," 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Jose, C.A., U.S.A., AIAA 2013-4054, Jul. 2013.
  22. Kajon, D., Liuzzi, D., Boffa, C., Rudnykh, M., Drigo, D., Arione, L., Ierardo, N. and Sirbi, A., "Development of the Liquid Oxygen and Methane M10 Rocket Engine for the Vega-E Upper Stage," 8th European Conference for Aeronautics and Space Sciences, Madrid, Spain, EUCASS 2019-315, Jul. 2019.
  23. "Long March 9 Configuration," retrieved 20 Oct. 2022 from https://inf.news/en/military/5249f3bc1a4f016c8781df63714ee5e3.html.
  24. Kawashima, H., Funakoshi, Y., Kurosu, A., Kobayashi, T. and Okita, K., "Development Status of LE-9 Engine for H3 Launch Vehicle," AIAA Propulsion and Energy 2019 Forum, Indianapolis, I.N., U.S.A., AIAA 2019-4024, Aug. 2019.
  25. Seo, K.S., Park, S.Y., Nam, C.H. and Moon, Y.W., "A Study on the Development Process of the Liquid Rocket Engine for the Upper Stage of the Korea Space Launch Vehicle-II," Journal of the Korean Society of Propulsion Engineers, Vol. 26, No. 1, pp. 68-76, 2022. https://doi.org/10.6108/KSPE.2022.26.1.068
  26. Kim, C.W., Lim, B.J., Lee, J.S., Seo, D.B., Lim, S.H., Lee, K.O., Lee, K.J. and Park, J.S., "Conceptual Design of a LoX/Methane Rocket Engine for a Small Launcher Upper Stage," Journal of the Korean Society of Propulsion Engineers, Vol. 26, No. 4, pp. 54-63, 2022. https://doi.org/10.6108/KSPE.2022.26.4.054
  27. Jung, J.T., Gil, G.N., Son, T.J., Ahn, S.S. and Hong, Y.G., "KoreanAir Engine Development Strategic and Engine System for Upper Stage Engine of Small Launch Vehicle," Journal of the Korean Society of Propulsion Engineers (to be published).
  28. Yang, V., Habiballah, M., Hulka, J. and Popp, M., Liquid Rocket Thrust Chambers: Aspect of Modeling, Analysis, and Design, 1st ed., American Institute of Aeronautics and Astronautics Inc., Reston, V.A., U.S.A., pp. 621-648, 1995.
  29. Watanabe, D., Manako, H., Onga, T., Tamura, T., Ikeda, K. and Isono, M., "Combustion Stability Improvement of LE-9 Engine for Booster Stage of H3 Launch Vehicle," Mitsubishi Heavy Industries Technical Review, Vol. 53, No. 4, pp. 28-35, 2016.
  30. "Expander Cycle Engines," retrieved 20 Oct. 2022 from https://www.nasa.gov/.
  31. NASA, "Turbopump Systems for Liquid Rocket Engines," NASA SP-8107, 1974.
  32. Leonardi, M., Matteo, F.D. and Nasuti, F., "Parametric Study on the Performance of an Expander Bleed Engine," Aerotecnica Missili & Spazio, Vol. 96, No. 1, pp. 32-43, 2017. https://doi.org/10.1007/BF03404735
  33. Buckmann, P.S., Shrimp, N.R., Viteri, F.V. and Proctor, M., "Design and Test of an Oxygen Turbopump for a Dual Expander Cycle Rocket Engine," Journal of Propulsion and Power, Vol. 8, No. 1, pp. 80-86, 1992. https://doi.org/10.2514/3.23445
  34. Stapp, D.T., "An Investigation of the Performance Potential of a Liquid Oxygen Expander Cycle Rocket Engine," Master Dissertation, Department of Aerospace Engineering and Mechanics in the Graduate School of The University of Alabama, Tuscaloosa, A.L., U.S.A., 2016.
  35. Strain, W.S., "Design of an Oxygen Turbopump for a Dual Expander Cycle Rocket Engine," Master Dissertation, Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright-Patterson Air Force Base, O.H., U.S.A., 2008.
  36. Kim, C.W., Liquid Rocket Engine, 1st ed., Kyungmoon Inc., Seoul, Korea, 2020.
  37. Leonardi, M., Matteo, F.D. and Nasuti, F., "Parametric Study on the Performance of an Expander Bleed Engine," Aerotecnica Missili & Spazio, Vol. 96, No. 1, pp. 32-43, 2017. https://doi.org/10.1007/BF03404735
  38. Rudnykh, M., Carapellese, S., Liuzzi, D., Arione, L., Caggiano, G., Bellomi, P., D'Aversa, E., Pellegrini, R., Lobov, S.D., Gurtovoy, A.A. and Rachuk, V.S., "Development of LM10-MIRA LOX/LNG Expander Cycle Demonstrator Engine," Acta Astronautica, Vol. 126, pp. 364-374, 2016. https://doi.org/10.1016/j.actaastro.2016.04.018
  39. Bellomi, P., Rudnykh, M., Carapellese, S., Liuzzi, D., Caggiano, G., Arione, L., Gurtovoy, A.A., Lobov, S.D., Rachuk, V.S., D'Aversa, E., Lillis, A.D. and Pellegrini, R.C., "Development of LM10-MIRA Liquid Oxygen-Liquid Natural Gas Expander Cycle Demonstrator Engine," Progress in Propulsion Physics, Vol. 11, pp. 447-466, 2019. https://doi.org/10.1051/eucass/201911447
  40. "Vega-E," retrieved 20 Oct. 202-2 from https://www.avio.com/vega-e.
  41. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 9th ed., John Wiley & Sons Inc., Hoboken, N.J., U.S.A., 2016.
  42. Chu, B., Zhao, H., Chen, X. and Gong, J., "Development Status of 25 tf LOX/LH2 Expander Cycle Rocket Engine," Journal of Rocket Propulsion, Vol. 48, No. 2, pp. 21-26, 2022.
  43. "Space Launch System RL10 Engine," retrieved 20 Oct. 2022 from https://www.nasa.gov/.
  44. "Vinci Engine," retrieved 20 Oct. 2022 from https://www.ariane.group/en/.
  45. Alliot P., Delange, J.F., De Korver, V., Sannino, J.M., Lekeux, A. and Vieille, B., "Vinci, the European Reference for Ariane 6 Upper Stage Cryogenic Propulsive System," Progress in Propulsion Physics, Vol. 11, pp. 481-494, 2019. https://doi.org/10.1051/eucass/201911481
  46. "Ariane 6 Technical Overview," retrieved 20 Oct. 2022 from https://www.arianespace.com/.
  47. KARI, "Pilot Study on Future Launcher Design and Innovative Manufacturing Technology," KR20241, 2021.
  48. Sack, W., Okita, K., Kurosu, A., Ogawara, A., Yoshikawa, K., Atsumi, M., Kishimoto, K. and Lunde, K., "Excellence of the Japanese Expander-Bleed Cycle Rocket Engine and Enhancements for Future Engine Applications," 26th International Symposium on Space Technology and Science Conference, Hamamatsu, Japan, ISTS 2008-a-03, Jun. 2008.
  49. Sekita, R., Yasui, M. and Warashina, S., "The LE-5 Series Development, Approach to Higher Thrust, Higher Reliability and Greater Flexibility," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, A.L., U.S.A., AIAA 2000-3453, Jul. 2000.
  50. "LE-5B Engine," retrieved 20 Oct. 2022 from https://www.mhi.com/.
  51. Kakuma, Y., Yasui, M., Onga, T., Sekita, R. and Warashina, S., "LE-5B Engine Development," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, A.L., U.S.A., AIAA 2000-3775, Jul. 2000.
  52. Fukushima, Y., Nakatsuzi, H. and Nagao, Ryuji., "Development Status of LE-7A and LE-5B Engines for H-IIA Family," Acta Astronautica, Vol. 50, No. 5, pp. 275-284, 2002. https://doi.org/10.1016/S0094-5765(01)00165-5
  53. Nagao, N., Nanri, H., Okita, K., Ishizu, Y., Yabuki, S. and Kohno, S., "The Modified Fuel Turbopump of 2nd Stage Engine for H3 Launch Vehicle," 7th European Conference for Aeronautics and Space Sciences, Milano, Italy, EUCASS 2017-189, Jul. 2017.
  54. "H3 Launch Vehicle," retrieved 20 Oct. 2022 from https://www.jaxa.jp/.
  55. "LE-9 Engine," retrieved 20 Oct. 2022 from https://global.jaxa.jp/.
  56. Ogawa, Y., Azuma, N., Aoki, K., Kobayashi, T., Okita, K., Motomura, T., Niiyama, K. and Shimiya, N., "The Latest Development Status of LE-9 Engine Turbopumps," 2018 Joint Propulsion Conference, Cincinnati, O.H., U.S.A., AIAA 2018-4550, Jul. 2018.
  57. Rachuk, V. and Titkov, N., "The First Russian LOX-LH2 Expander Cycle LRE: RD0146," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, C.A., U.S.A., AIAA 2006-4904, Jul. 2006.
  58. De Luca, L.T., Shimada, T., Sinditskii, V.P. and Calabro, M., Chemical Rocket Propulsion, 1st ed., Springer Nature, Switzerland, pp. 427-462, 2017.
  59. "RD-0146 Engine," retrieved 20 Oct. 2022 from https://kbkha.ru/.
  60. Almeida, D.S., Santos, E.A. and Langel, G., "Upper Stage Liquid Propellant Rocket Engine: A Case Analysis," Journal of Aerospace Technology and Management, Vol. 13, 2021.
  61. Tan, Y., "New Power for Boosting China's Aerospace Industry," Aerospace China, Vol. 18, No. 1, pp. 15-22, 2017.
  62. "BE-3 Engine," retrieved 20 Oct. 2022 from https://www.blueorigin.com/.
  63. "New Glenn Payload User's Guide," retrieved 20 Oct. 2022 from https://www.blueorigin.com/.
  64. "BE-7 Engine," retrieved 20 Oct. 2022 from https://www.blueorigin.com/.